tính nhanh:
\(\dfrac{2}{6}+\dfrac{9}{20}-\dfrac{11}{30}+\dfrac{13}{42}-\dfrac{15}{56}+\dfrac{17}{72}-\dfrac{19}{90}+\dfrac{21}{110}-\dfrac{23}{132}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)
A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+ \(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{6}\)
= \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}.\dfrac{100}{101}\)
= \(\dfrac{250}{101}\)
A = \(\dfrac{3}{2}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{12}\) - \(\dfrac{9}{20}\) + \(\dfrac{11}{30}\) - \(\dfrac{13}{42}\) + \(\dfrac{15}{56}\) - \(\dfrac{17}{72}\)
A = (1 + \(\dfrac{1}{2}\)) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)) - (\(\dfrac{1}{4}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\) + \(\dfrac{1}{6}\)) - (\(\dfrac{1}{6}\) + \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7}\) + \(\dfrac{1}{8}\)) - (\(\dfrac{1}{8}\) + \(\dfrac{1}{9}\))
A = 1 + \(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)
A = 1 - \(\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
\(A=\left(1+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{1}{8}\right)-\left(\dfrac{1}{8}+\dfrac{1}{9}\right)\)
\(A=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}-\dfrac{1}{9}\)
\(A=1+\dfrac{1}{9}=\dfrac{10}{9}\)
\(=1-\dfrac{1}{2}+1-\dfrac{1}{6}+...+1-\dfrac{1}{90}\)
\(=10-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\)
\(=10-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
=9+1/10
=9,1
1,Ta có:\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{57}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\) =\(\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+...+\dfrac{1}{2}\right)\)
= \(\dfrac{9}{10}-\left\{\dfrac{1}{\left(9.10\right)}+\dfrac{1}{\left(9.8\right)}+...+\dfrac{1}{\left(2.1\right)}\right\}\)
= \(\dfrac{9}{10}-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{1}-\dfrac{1}{2}\right).\left(\dfrac{1}{90}=\dfrac{1}{9.10}=\dfrac{1}{9}-\dfrac{1}{10}\right)\)=\(\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)\)
=\(\dfrac{9}{10}-\dfrac{9}{10}\)
= 0
Ý 2 dễ rồi bạn tự tính
1, \(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{9.10}+\dfrac{1}{8.9}+...+\dfrac{1}{1.2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+...+1-\dfrac{1}{2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{-1}{10}+1\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)
2, \(\dfrac{-5}{11}\cdot\dfrac{13}{17}-\dfrac{5}{11}.\dfrac{4}{17}\)
\(=\dfrac{-5}{11}\cdot\dfrac{13}{17}+\dfrac{-5}{11}.\dfrac{4}{17}\)
\(=\dfrac{-5}{11}\left(\dfrac{13}{17}+\dfrac{4}{17}\right)=\dfrac{-5}{11}.1=\dfrac{-5}{11}\)
\(=1-\dfrac{1}{2}+1-\dfrac{1}{6}+1-\dfrac{1}{12}+1-\dfrac{1}{20}+1-\dfrac{1}{30}+1-\dfrac{1}{42}+1-\dfrac{1}{56}+1-\dfrac{1}{72}+1-\dfrac{1}{90}\)
\(=9-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=9-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=9-\left(1-\dfrac{1}{10}\right)\)
\(=9-\dfrac{9}{10}\)
\(=\dfrac{81}{10}\)