K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Ta có: \(\dfrac{23n^2-1}{35}\in Z\)

\(\Rightarrow23n^2-1=35k\left(k\in Z\right)\)

\(\Rightarrow23n^2=35k+1\)

Mà 35k + 1 chia cho 5 hoặc 7 đều dư 1 nên 23n2 chia cho 5 hoặc 7 đều dư 1

Hay n không chia hết cho 5, 7

Vậy \(\dfrac{n}{5},\dfrac{n}{7}\) là các phân số tối giản

Bài 1: 

\(=\dfrac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\dfrac{3}{5^2}=\dfrac{3}{25}\)

26 tháng 3 2021

\(\dfrac{a}{b}\) chưa tối giản

→a⋮b.

vì a⋮b và b⋮b

→a+b⋮b

\(\dfrac{a+b}{b}\) chưa tối giản (ĐPCM)

29 tháng 6 2021

a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)

Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d

⇒ d ∈ Ư (-1) = (+-1)

⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản 

từ đo bạn tự làm được không? 

29 tháng 6 2021

câu b nhân mẫu lên 4 thành 4n + 8, ta có \(\dfrac{\left(4n+7\right)}{4n+8}\) rồi bạn trừ tử cho mẫu sẽ được -1

dạng này bạn chỉ cần cố gắng nhân mẫu hoặc tử hoặc cả hai để khi trừ tử cho mẫu thì được kết quả là 1 hoặc -1 là đc

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

19 tháng 3 2021

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy A=12n+130n+2A=12n+130n+2 là phân số tối giản

19 tháng 3 2023

1Đặt UCLN(\(2n^2\) + n + 1;n) = d

=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d

=> (2n + 1) n ⋮ d

<=>\(2n^2\)  + n ⋮ d

<=>(2n+ n + 1) - (2n2 + n) ⋮ d

<=> 1⋮d

=> d ϵƯ(1)=1

=>UCLN(\(2n^2\) + n + 1;n) =1

=>dpcm

 

19 tháng 3 2023

hum biết nhe

khó qué

tui mới L4 

HIHI

 

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)