1. Rút gọn phân số
\(\dfrac{\text{9^{14}. 25^5. 8^7}}{\left(-18\right)^{12}.625^3.24^3}\)
2. Cho \(\dfrac{23n^2-1}{35}\in Z\)
Chứng minh các phân số sau tối giản: \(\dfrac{n}{5}\); \(\dfrac{n}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
Ta có: \(\dfrac{23n^2-1}{35}\in Z\)
\(\Rightarrow23n^2-1=35k\left(k\in Z\right)\)
\(\Rightarrow23n^2=35k+1\)
Mà 35k + 1 chia cho 5 hoặc 7 đều dư 1 nên 23n2 chia cho 5 hoặc 7 đều dư 1
Hay n không chia hết cho 5, 7
Vậy \(\dfrac{n}{5},\dfrac{n}{7}\) là các phân số tối giản
Bài 1:
\(=\dfrac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\dfrac{3}{5^2}=\dfrac{3}{25}\)