K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABK có BK=BA

nên ΔBAK cân tại B

b: \(\widehat{BAH}+\widehat{B}=90^0\)

\(\widehat{ACB}+\widehat{B}=90^0\)

Do đó: \(\widehat{BAH}=\widehat{ACB}\)

Ta có: \(\widehat{HAK}+\widehat{BKA}=90^0\)

\(\widehat{IAK}+\widehat{BAK}=90^0\)

mà \(\widehat{BAK}=\widehat{BKA}\)

nên \(\widehat{HAK}=\widehat{IAK}\)

5 tháng 3 2017

theo minh la dap an A ;nho k minh nhe

27 tháng 3 2018

Hu hu, khocroigiúp với, cần gấp lắm, mai nộp òi

27 tháng 3 2018

trần hà my

Nguyễn Huy Tú

Nguyễn Huy Thắng

Akai Haruma

Help me !!!!!!!!!!!!!!!!

15 tháng 7 2019

1. Vì AB=AH(gt)

         AH=AI(gt)

=> AB+AI( áp dụng tính chất bắc cầu

2. Dễ thấy góc BAH=góc BCA vì cả hai góc cùng phụ với góc ABC:

góc BAH+gócHBA=90 độ (tam giác ABH vuông tại H)

góc BCA = góc ABC = 90 độ ( tam giác ABC vuông tại A)

5 tháng 3 2017

Xét tam giác ABH vuông tại H, ta có: \(\widehat{BAH}=90-\widehat{ABC}\)

Xét tam giác ABC vuông tại A, ta có: \(\widehat{ACB}=90-\widehat{ABC}\)

Từ hai điều trên suy ra: \(\widehat{BAH}=\widehat{ACB}\)

5 tháng 3 2017

uuuuuuuuuuursasssssssssssssssss

a: Xét ΔBAK có BA=BK

nên ΔBAK cân tại B

b: góc BAH+góc B=90 độ

góc ACB+góc B=90 độ

=>góc BAH=góc ACB

góc HAK+góc BKA=90 độ

góc KAI+góc BAK=90 độ

mà góc BKA=góc BAK

nên góc HAK=góc KAI

d: (AH+BC)^2=AH^2+2*AH*BC+BC^2

=AH^2+2*AB*AC+AB^2+AC^2

=AH^2+(AB+AC)^2>(AB+AC)^2

=>AH+BC>AB+AC

c: AH+BC>AB+AC

=>BC-AB>AC-AH

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0