K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{7}{15}\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}-\frac{3}{5}x+\frac{7}{15}=0\)

\(\Leftrightarrow\frac{8}{15}x=0\)

\(\Leftrightarrow x=0\)

13 tháng 1 2019

\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\right)\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{13.15}\right)\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)

\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)

\(\Leftrightarrow\left(1-\frac{1}{15}\right)\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)

\(\Leftrightarrow\frac{14}{15}\left(x-1\right)=\frac{6}{5}x-\frac{14}{15}\)

\(\Leftrightarrow\frac{14}{15}x-\frac{14}{15}=\frac{6}{5}x-\frac{14}{15}\)

\(\Leftrightarrow-\frac{4}{15}x=\frac{28}{15}\)

\(\Leftrightarrow x=7\)

21 tháng 1 2016

\(x=\frac{7}{5}\)

nhớ tick nha pạn

7 tháng 1 2017

$\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{103.105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{103}-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}.\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}x-\frac{52}{105}=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow x=-\frac{3}{11}$

8 tháng 1 2017

b) Đặt \(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\)

A\(=\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{1}{3.103}+...+\frac{100}{10.110}\right)\)

A\(=\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)

A\(=\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)Đặt \(B=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{10}{100.110}\)

\(B=\frac{1}{10}\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)

\(B=\frac{1}{10}\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(B=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right]\)\(=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)\(B=10A\)

\(A.x=10A\)

\(=>x=10\)

20 tháng 4 2020

Câu hỏi của Huỳnh Ngọc Cẩm Tú - Toán lớp 6 - Học toán với OnlineMath

30 tháng 7 2020

\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)

Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)

Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)

\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)

Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)

=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)

30 tháng 7 2020

Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)

\(\Rightarrow A=12a+\frac{12}{25}\)

Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3B-B=1-\frac{1}{243}\)

\(\Rightarrow2B=\frac{242}{243}\)

\(\Rightarrow B=\frac{121}{243}\)

\(\Rightarrow A=11a+B\)

\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)

\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)

\(\Leftrightarrow a=\frac{109}{6075}\)