K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

Lời giải:

Gọi vế trái là $A$

$2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+...+\frac{2}{2022^2}$

Xét số hạng tổng quát:

$\frac{2}{n^2}$. Ta sẽ cm $\frac{2}{n^2}< \frac{1}{(n-1)n}+\frac{1}{n(n+1)}(*)$

$\Leftrightarrow \frac{2}{n^2}< \frac{n+1+n-1}{n(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{(n-1)(n+1)}$

$\Leftrightarrow \frac{2}{n^2}< \frac{2}{n^2-1}$ (luôn đúng)

Thay $n=2,4,...., 2022$ vào $(*)$ ta có:

$\frac{2}{2^2}< \frac{1}{1.2}+\frac{1}{2.3}$

$\frac{2}{4^2}< \frac{1}{3.4}+\frac{1}{4.5}$

.......

Suy ra: $2A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023}$

$2A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2022}-\frac{1}{2023}$

$2A< 1-\frac{1}{2023}< 1$

$\Rightarrow A< \frac{1}{2}$

28 tháng 6 2021

Vì `3x vdots 3`

`6y vdots 3`

`3x(x+1) vdots 3`

`=>A vdots 3`

28 tháng 4 2022

Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)

Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−12+12−13+...+17−18=1−12+12−13+...+17−18

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

a: Xét ΔMND và ΔMPE có 

MN=MP

\(\widehat{MND}=\widehat{MPE}\)

ND=PE

Do đó: ΔMND=ΔMPE

b: Xét ΔMNH vuông tại H và ΔMPK vuông tại K có 

MN=MP

\(\widehat{HMN}=\widehat{KMP}\)

Do đó: ΔMNH=ΔMPK

Suy ra: NH=PK

27 tháng 8 2015

 7^17 +17.3 -1 = 7^17 +50 chia hết cho 9 
Mà 50 chia 9 dư 5 
=> 7^17 chia 9 dư 4 
=> 7^17 .7 chia 9 dư 1 
<=> 7^18 chia 9 dư 1 
18.3 -1 = 53 chia 9 dư 8 
=> 7^18 +18.3 -1 chia hết cho 9 

14 tháng 3 2020

Minh biet cach giai a chia het cho 21 roi:

A=(1+4+4^2)+...+(4^15+4^16+4^17)

A=21+4^3(1+4+4^2)+...+4^15(1+4+4^2)

Bay gio phai viet ly do ntn de chung minh a chia het cho 21 vay