Rút gọn: \(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{9}{x^3+x^2y+xy^2}\right).\left(y+\frac{x^2}{x+y}\right)\)
\(=\left(\frac{1}{x.\left(x-y\right)}-\frac{3y^2}{x.\left(x^3-y^3\right)}-\frac{9}{x.\left(x^2+xy+y^2\right)}\right).\left(\frac{y.\left(x+y\right)}{x+y}+\frac{x^2}{x+y}\right)\)
\(=\left(\frac{1}{x.\left(x-y\right)}-\frac{3y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{9}{x.\left(x^2+xy+y^2\right)}\right).\left(\frac{y^2+xy}{x+y}+\frac{x^2}{x+y}\right)\)
\(=\left(\frac{x^2+xy+y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3y^2}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{9x-9y}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)
\(=\frac{x^2+xy-2y^2-9x+9y}{x.\left(x-y\right)\left(x^2+xy+y^2\right)}.\frac{x^2+xy+y^2}{x+y}\)
làm tip nha bận rồi
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)
Giờ chỉ cần thế x, y vô nữa là xong nhé.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)
\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)
\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)
\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)
\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)
Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :
\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)
=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)
=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)
=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)
\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)
=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\frac{x^2+xy+y^2}{x+y}\)
=\(\left(\frac{x^2+xy+-2y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)
=\(\left(\frac{x^2-y^2}{x\left(x-y\right)}\right).\left(\frac{1}{x+y}\right)\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)
Mình vs bạn trùng họ và tên rồi thì phải....!