biet tan a = 2. tính biểu thức sau:
A=sin^2 a+2.sin a.cos a-3cos^2 a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}sin^2a+c\text{os}^2a=1\\sina=2cosa\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{2}{\sqrt{5}}\\c\text{os}a=\frac{1}{\sqrt{5}}\end{cases}}\)hoặc \(\orbr{\begin{cases}sina=-\frac{2}{\sqrt{5}}\\c\text{os}a=-\frac{1}{\sqrt{5}}\end{cases}}\)
Thế vô đi
Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)
A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)
a/ \(cos^2a=1-sin^2a=\frac{5}{9}\)
\(P=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=-\frac{17}{10}\)
b/ \(M=\frac{1}{\frac{sina}{cosa}+\frac{cosa}{sina}}=\frac{1}{\frac{sin^2a+cos^2a}{sina.cosa}}=sina.cosa=\frac{2\sqrt{2}}{9}\)
\(1+\tan^2\alpha=\dfrac{1}{\cos^2a}\)
\(\Rightarrow\cos^2\alpha=\dfrac{1}{1+\tan^2\alpha}=\dfrac{1}{5}\)
\(2=\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(\Rightarrow\sin\alpha=2\cos\alpha\)
\(A=\sin^2\alpha+2\sin\alpha\times\cos\alpha-3\cos^2\alpha\)
\(=4\cos^2\alpha+4\cos^2\alpha-3\cos^2\alpha\)
\(=5\cos^2\alpha\)
= 1
Mình bấm máy tính cho nhanh
ta có tan a =2
suy ra a=63,4349488
gán x=a= cái số ở trên
Sau đó Bấm biểu thức A mà thay a là x đó
ta được A=1
khó