K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để P nguyên thì \(2\sqrt{x}-3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2=7\)

hay x=25

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 5:

\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)

Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.

$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất

$\Rightarrow \sqrt{x}-2=-1$

$\Leftrightarrow x=1$ (thỏa mãn đkxđ)

 

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 6:

$D(\sqrt{x}+1)=x-3$

$D^2(x+2\sqrt{x}+1)=(x-3)^2$

$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên 

Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên 

Với $D=0\Leftrightarrow x=3$ (tm)

Với $\sqrt{x}$ nguyên:

$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$

$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$

$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$

$\Leftrightarrow x=0; 1$

Vì $x\neq 1$ nên $x=0$.

Vậy $x=0; 3$

Bài 12: 

Để N là số nguyên thì \(\sqrt{x}+3⋮\sqrt{x}+5\)

\(\Leftrightarrow-2⋮\sqrt{x}+5\)

\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2\right\}\)(vô lý

Bài 11: 

Để M là số nguyên thì \(3\sqrt{x}+1⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)

\(\Leftrightarrow x\in\left\{1;25\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:
$M(2\sqrt{x}-3)=\sqrt{x}+2$

$\Leftrightarrow \sqrt{x}(2M-1)=3M-2$

$\Leftrightarrow x=(\frac{3M-2}{2M-1})^2$

Vì $x$ nguyên nên $\frac{3M-2}{2M-1}$ nguyên 

$\Rightarrow 3M-2\vdots 2M-1$

$\Leftrightarrow 6M-4\vdots 2M-1$
$\Leftrightarrow 3(2M-1)-1\vdots 2M-1$
$\Leftrightarrow 1\vdots 2M-1$

$\Rightarrow 2M-1\in\left\{\pm 1\right\}$

$\Rightarrow M=0;1$

$\Leftrightarrow x=4; 1$ (đều tm)

Bài 2: 

Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 8:

\(M=1+\frac{4}{\sqrt{x}+1}\)

Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên 

Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương 

$\Rightarrow \sqrt{x}+1=\frac{4}{t}$

$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$

$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$

Mà $t$ nguyên dương suy ra $t=1;2;3;4$

Kéo theo $x=9; 1; \frac{1}{9}; 0$

Kết hợp đkxđ nên $x=0; \frac{1}{9};9$

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 9:

$P=1+\frac{5}{\sqrt{x}+2}$

Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên 

Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$

$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$

$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$

Với $t>0\Rightarrow 5-2t\geq 0$

$\Leftrightarrow t\leq \frac{5}{2}$

Vì $t$ nguyên dương suy ra $t=1;2$

$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

23 tháng 10 2021

a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

23 tháng 10 2021

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

                        Đk: \(x>0\) và \(x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

        \(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào A ta được:

  \(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)

      \(=\sqrt{2}+1-1=\sqrt{2}\)

(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))