K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

  • Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

Khi đó \(P=1+1+1+1=4\)

  • Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

 

24 tháng 12 2016

ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

10 tháng 12 2018

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow1+\frac{y+z+t}{x}=1+\frac{z+t+x}{y}=1+\frac{t+x+y}{z}=1+\frac{x+y+z}{t}\)

\(\Leftrightarrow\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}=\frac{x+y+z+t}{t}\)

\(TH1:x+y+z+t=0\left(ĐK:x,y,z,t\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\end{cases}\Rightarrow P=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(x+t\right)}{x+t}+\frac{z+t}{-\left(z+t\right)}+\frac{t+x}{-\left(y+z\right)}}\)=-4

\(TH2:x+y+z+t\ne0\)

\(\Rightarrow x=y=z=t\Rightarrow P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=4\)

Vậy P=4 hay P=-4

Trả lời :..................................

P = 4,..................................

Hk tốt......................................

25 tháng 7 2018

\(\frac{y+z+t}{x}=\frac{x+z+t}{y}=\frac{y+x+t}{z}=\frac{y+z+x}{t}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z+t}{x}=\frac{x+z+t}{y}=\frac{y+x+t}{z}=\frac{y+z+x}{t}=\frac{y+z+t+x+z+t+y+x+t+y+z+x}{x+y+z+t}\)

\(=\frac{3x+3y+3z+3t}{x+y+z+t}=\frac{3.\left(x+y+z+t\right)}{x+y+z+t}=3\)

\(\Rightarrow\frac{y+z+t}{x}=3\Rightarrow y+z+t=3x\)

   \(\frac{x+z+t}{y}=3\Rightarrow x+z+t=3y\)

   \(\frac{y+x+t}{z}=3\Rightarrow y+x+t=3z\)

   \(\frac{y+z+x}{t}=3\Rightarrow y+z+x=3t\)

\(M=\frac{2x}{y+z+t}-\frac{3y}{x+z+t}-\frac{4z}{x+y+t}-\frac{5t}{x+y+z}\)

\(\Rightarrow M=\frac{2x}{3x}-\frac{3y}{3y}-\frac{4z}{3z}-\frac{5t}{3t}\)

\(M=\frac{2}{3}-\frac{3}{3}-\frac{4}{3}-\frac{5}{3}\)

\(M=\frac{2-3-4-5}{3}\)

\(M=\frac{-10}{3}\)

Vậy \(M=\frac{-10}{3}\)

Tham khảo nhé~

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

9 tháng 1 2020

Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)

=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)

=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)

=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)

=> x = y = z = t = 403

Khi đó A = x + 2y - 3z + t

              = x + 2x - 3x + x

             = x = 403

Vậy x = 403 

21 tháng 3 2020

Lần sau em nên ghi đúng đề:

\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)

=> \(\frac{y+z+t}{x}-n=\frac{z+t+x}{y}-n=\frac{t+x+y}{z}-n=\frac{x+y+z}{t}-n\)

=> \(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3x+3y+3z+3t}{x+y+z+t}=3\)

Mà x + y + z + t = 2020

=> \(\frac{2020-x}{x}=\frac{2020-y}{y}=\frac{2020-z}{z}=\frac{2020-t}{t}=3\)

=> \(\frac{2020}{x}-1=\frac{2020}{y}-1=\frac{2020}{z}-1=\frac{2020}{t}-1=3\)

=> \(\frac{2020}{x}-1+1=\frac{2020}{y}-1+1=\frac{2020}{z}-1+1=\frac{2020}{t}-1+1=3+1\)

=> \(\frac{2020}{x}=\frac{2020}{y}=\frac{2020}{z}=\frac{2020}{t}=4\)

=> \(x=y=z=t=505\)

=> \(P=x+2y-3z+t=505+2.505-3.505+505=505\)

12 tháng 11 2016

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(=\frac{x+y+z+t}{y+z+t+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}\)

\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)

\(\Rightarrow x=y=z=t\)

\(=\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{x+z}=\frac{x+x}{x+x}+\frac{y+y}{y+y}+\frac{z+z}{z+z}+\frac{t+t}{t+t}=4\)

5 tháng 9 2017

vì sao x=y=z=t

2 tháng 11 2016

từ biểu thức đã cho , ta thấy các phân số bằng nhau . 

Có 2 dạng bằng nhau :

- cũng mẫu và tử 

- nhân hay chia mẫu và tử cho một số thì được phân số đã cho 

Nếu ta lấy cách 1 , cũng mẫu và tử thì có :

y = z = t = x 

Vậy có biểu thức phía dưới bằng :

1 + 1 + 1 + 1 = 4 

Vậy theo cách là các phân số này cùng có mẫu và tử giống nhau thì phân số này bằng 4

còn theo cách kia tớ không biết giải