K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2021

Gọi H là trung điểm BC \(\Rightarrow AH\perp BC\) và \(AH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Áp dụng định lý Pitago cho tam gaics vuông AA'H:

\(A'H=\sqrt{A'A^2-AH^2}=\dfrac{3a}{2}\)

\(V=A'A.S_{ABC}=\dfrac{3a}{2}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{3}}{8}\)

19 tháng 11 2017

7 tháng 5 2018

Đáp án D

Ta có góc giữa cạnh bên AA' với mặt đáy (ABC) là:

góc A ' A H ^  và  tan A ' A H = A ' H A H

Suy ra A ' H = a 2 . tan 30 ° = a 3 6

Do đó V = A ' H . S A B C = a 3 6 . a 2 3 4 = a 3 8  

21 tháng 8 2017

Đáp án: B.

Gọi H là trung điểm của BC.

7 tháng 10 2018

Chọn D

15 tháng 8 2017

Chọn B.

 

Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.

Do tam giác ABC đều cạnh a nên 

Trong mặt phẳng (AA'M)  kẻ MH ⊥ AA'. Khi đó: 

Vậy MH là đoạn vuông góc chung của AA' và BC nên MH =  a 3 4 .

Trong tam giác AA'G kẻ 

Xét tam giác AA'G vuông tại G ta có: 

Vậy thể tích của khối lăng trụ đã cho là  

 

26 tháng 5 2018

20 tháng 11 2018

Đáp án C

27 tháng 5 2018

Đường cao của lăng trụ

h = 2 3 . a 3 2 . tan φ = a 3 3 tan φ V = a 2 3 4 . a 3 3 tan φ = a 3 4 tan φ

Đáp án A

23 tháng 12 2019

Đáp án A