K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

4 tháng 10 2017

a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)

=>(x-3/2)2=5/4

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)

b: \(x^2+\sqrt{2}x-1=0\)

nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

c: \(5x^2-7x+1=0\)

\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)

\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)

hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)

NV
12 tháng 1 2021

\(\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=1-4\left(1-cos^2x\right)\)

\(\Leftrightarrow\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=4cos^2x-3\)

\(\Leftrightarrow\left(2cosx+\sqrt{3}\right)\left(cos2x+2sinx-\sqrt{3}\right)=\left(2cosx+\sqrt{3}\right)\left(2cosx-\sqrt{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{\sqrt{3}}{2}\Rightarrow x=...\\cos2x+2sinx-\sqrt{3}=2cosx-\sqrt{3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cos^2x-sin^2x-2\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)-2\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx-2\right)=0\)

\(\Leftrightarrow...\)