1, tìm x biết 2011-|x-2011|=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2011\right)^{x+1}-\left(x-2011\right)^{x+2011}=0\)
\(\Rightarrow\left(x-2011\right)^{x+1}.\left(1-x^{2010}\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}\left(x-2011\right)^{x+1}=0\\1-x^{2010}=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2011\\x=\pm1\end{array}\right.\)
Vậy x = 2011 ; x = 1 ; x = - 1
Ta cÓ : ( x - 2011) x+ 1 - ( x - 2011)x + 2011
=) x - 2011= 0 =) x = 2011
\(\Leftrightarrow2011.\left|x-2011\right|+\left(x-2011\right)^2=2013.\left|x-2011\right|\)
\(\Leftrightarrow\left(x-2011\right)^2=2.\left|x-2011\right|\Rightarrow\orbr{\begin{cases}x-2011=0\\2=\left|x-2011\right|\end{cases}}\Rightarrow\orbr{\begin{cases}x=2013\\x=2009\end{cases}}\text{hoặc }x=2011\)
Vậy ....
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
X x 2011-X=2011x2009+2011
Xx(2011-1)=2011x(2009+1)
Xx2010 = 2011x2010
=> X=2011
\(2011-\left|x-2011\right|=x\)
\(\Rightarrow\left|x-2011\right|=2011-x\)
\(\Rightarrow x-2011=\pm\left(2011-x\right)\)
+) \(x-2011=2011-x\)
\(\Rightarrow2x=2011+2011\)
\(\Rightarrow x=2011\) ( chọn )
+) \(x-2011=-\left(2011-x\right)\)
\(\Rightarrow x-2011=-2011+x\)
\(\Rightarrow0=0\) ( vô lí )
Vậy \(x=2011\)
$2011 - |x-2011| = x$
$\iff |x-2011| = 2011 - x$
$\iff x -2011 \leqslant 0$
$\iff x \leqslant 2011$