K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

b: Xét tứ giác AMNE có 

AM//NE

AM=NE

Do đó: AMNE là hình bình hành

c: Xét ΔAHD có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHE cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

b: Xét tứ giác AMNE có 

AM//NE

AM=NE

Do đó:AMNE là hình bình hành

c: Xét ΔAHD có 

AM là đường cao

AM là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của HAD(1)

Xét ΔAHE có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHE cân tại A
mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=180^0\)

=>E,A,D thẳng hàng

mà AE=AD

nên A là trung điểm của DE

18 tháng 10 2021

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

nên AMHN là hình chữ nhật

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

12 tháng 12 2021

a) Xét tứ giác AHCE có:

+ D là trung điểm của AC (gt).

+ D là trung điểm của HE (do E đối xứng với H qua D).

=> Tứ giác AHCE là hình bình hành (dhnb).

Mà ^AHC = 90o (AH vuông góc BC).

=> Tứ giác AHCE là hình chữ nhật (dhnb).

Xét tứ giác AHBN có:

+ M là trung điểm của AB (gt).

+ M là trung điểm của  HN (do N đối xứng với H qua M).

=> Tứ giác AHBN là hình bình hành (dhnb).

Mà ^AHB = 90o (AH vuông góc BC).

=> Tứ giác AHBN là hình chữ nhật (dhnb).

b) Tứ giác AHCE là hình chữ nhật (cmt).

=> AE // HC (Tính chất hình chữ nhật).

Xét tứ giác AEHI có:

+ AE // IH (do AE // HC).

+ AI // EH (gt).

=> Tứ giác AEHI là hình bình hành (dhnb).

c) Ta có: AE = IH (Tứ giác AEHI là hình bình hành).

Mà AE = HC (Tứ giác AHCE là hình chữ nhật).

=> IH = HC.

=> H là trung điểm IC.

Xét tứ giác CAIK có:

+ H là trung điểm của IC (cmt).

+ H là trung điểm của AK (AH = HK).

=> Tứ giác CAIK là hình bình hành (dhnb).

Mà AK vuông góc IC (do AH vuông góc BC).

=> Tứ giác CAIK là hình thoi (dhnb).