K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)

23 tháng 11 2016

Ta có hình vẽ sau:

A H D B C 1 2 M N

a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)

Xét ΔABH và ΔDBH có:

BH là cạnh chung

\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)

AH = DH (gt)

=> ΔABH = ΔDBH (c.g.c) (đpcm)

b) Vì ΔABH = ΔDBH (ý a)

=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)

= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)

c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

BC là cạnh chung

\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)

AB = DB (cm tên)

=> ΔABC = ΔDBC(c.g.c)

=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)

d) Vì ΔABH = ΔDBH (ý a)

=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB

=> NB = ND = \(\frac{1}{2}\)DB

=> N là trung điểm của BD(đpcm)

23 tháng 11 2016

câu a) có nhầm ko z bn?

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

c: Xét ΔACD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔACD cân tại C

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

DO đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)

28 tháng 4 2019

Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!

28 tháng 4 2019

làm a b thui

22 tháng 11 2016

a/ Xét tam giác AHB và tam giác AHC có:

AB = AC (GT)

AH: cạnh chung

góc HAB = góc HAC (GT)

=> tam giác AHB = tam giác AHC (c.g.c)

b/ Ta có: tam giác AHB = tam giác AHC (câu a)

=> góc B = góc C (2 góc tương ứng)

c/ Ta có: tam giác AHB = tam giác AHC (câu a)

=> BH = HC (2 cạnh tương ứng) (1)

=> góc AHB = góc AHC (2 góc tương ứng) (2)

Mà góc AHB + góc AHC = 1800

=> góc AHB = AHC = 900 (3)

Từ (1);(2);(3) => AH là trung trực của BC

Xét tam giác AHB và tam giác EHC có:

góc AHB = góc EHC (đối đỉnh)

BH = CH (đã chứng minh)

HE = HA (GT)

=> tam giác AHB = tam giác EHC

mk xin lỗi nhé, khuya rồi mà mai mk phải đi hc sớm

nên giờ mk giải đến đây, mai mk giải tiếp nhé

23 tháng 11 2016

Mk giải tiếp nhé:

e/ Ta có: tam giác AHB = tam giác EHC (câu d)

=> \(\widehat{BAH}\)=\(\widehat{HEC}\) (2 góc tương ứng)

Mà góc BAH, góc HEC ở vị trí so le trong

=> AB//CE (đpcm)

f/ Xét tam giác AHC và tam giác BHE có:

góc AHC = góc BHE (đối đỉnh)

AH = HE (GT)

BH = HC (đã chứng minh)

=> tam giác AHC = tam giác BHE (c.g.c)

Ta có: \(\widehat{ABH}\)=\(\widehat{ECH}\) (vì tam giác ABH = tam giác CHE) (1)

Ta lại có: \(\widehat{HBE}\)=\(\widehat{ACH}\)(vì tam giác AHC = tam giác BHE) (2)

Từ (1), (2) => \(\widehat{ABH}\)+\(\widehat{HBE}\)=\(\widehat{ECH}\)+\(\widehat{ACH}\)

=> \(\widehat{ABE}\)=\(\widehat{ACE}\) (đpcm)

h/ Ta có: tam giác AHC = tam giác BHE (câu f)

=> \(\widehat{CAH}\)=\(\widehat{HEB}\) (2 góc tương ứng)

Mà góc CAH, góc HEB ở vị trí so le trong

=> BE//AC (đpcm)

g/ Xét tam giác BAC và tam giác BEC có:

BC: cạnh chung

AB = CE (vì tam giác ABH = tam giác ECH)

AC = BE (vì tam giác AHC = tam giác BHE)

=> tam giác BAC = tam giác BEC (c.c.c)

=>\(\widehat{ABC}\)=\(\widehat{EBC}\) (2 góc tương ứng)

=> BC là phân giác của góc ABE

18 tháng 12 2016

A B C D H E

a) Xét ΔABH vÀ ΔDBH có:

BH:cạnh chung

\(\widehat{AHB}=\widehat{DHB}=90^o\)

AH=DH(gt)

=> ΔABH=ΔDBH(c.g.c)

b)Xét ΔAHC và ΔDHC có:

AH=DH(gt)

\(\widehat{AHC}=\widehat{DHC}=90^o\)

HC: cạnh chung

=> ΔAHC=ΔDHC(c.g.c)

=> AC=CD

c) Xét ΔBHD và ΔEHA có:

\(\widehat{BHD}=\widehat{EHA}=90^o\)

DH=AH(gt)

\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)

=> ΔBHD=ΔEHA(g.c.g)

=> BH=EH

=>H là trung điểm của BE

1: AH=8cm

2: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

4: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

10 tháng 3 2022

làm sao tính đc AH =8cm

 

b: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có 

CH chung

HA=HD

Do đó: ΔCHA=ΔCHD

Suy ra: CA=CD