1. Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của MA lấy điểm N sao cho MN = MA
a, CM: tam giác AMB = tam giác NMC b, CM: tam giác AMC = tam giác NMB
c, CM: BN vuông góc với AB c, CM: CN // AB
2. Cho tam giác ABC có M, N lần lượt là trung điểm của AB, AC. Trên các tia đối của MC, NB lần lượt lấy các điểm E, F sao cho ME = MC, NF = NB.
a, CM: tam giác MBC = tam giác MAE b, CM: tam giác NBC = tam giác NFA
c, CM: AE // BC d, BC = AF
1.
Xét tam giác AMB và tam giác NMC có:
AM = NM (gt)
AMB = NMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác NMC (c.g.c)
Xét tam giác AMC và tam giác NMB có:
AM = NM (gt)
AMC = NMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC = Tam giác NMB (c.g.c)
2.
Xét tam giác AME và tam giác BMC có:
AM = BM (M là trung điểm của AB)
AME = BMC (2 góc đối đỉnh)
ME = MC (gt)
=> Tam giác AME = Tam giác BMC (c.g.c)
=> AEM = BCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AE // BC
Xét tam giác ANF và tam giác CNB có:
AN = CN (N là trung điểm của AC)
ANF = CNB (2 góc đối đỉnh)
NF = NB (gt)
=> Tam giác ANF = Tam giác CNB (c.g.c)
=> AF = CB (2 cạnh tương ứng)