Khi chia 1 STN gồm 3 chữ số như nhau cho 1 STN gồm 3 chữ số như nhau, ta được thương là 2 và còn dư. Nếu xóa 1 chữ số ở số bị chia và 1 chữ số ở số chia thì thương của phép chia bằng 2 nhưng số dư giảm hơn trước là 100 đơn vị. Tìm số bị chia và số chia.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: Gọi số bị chia ban đầu là , => số bị chia mới là
Số chia ban đầu là , => số chia mới
Số dư của phép chia ban đầu là r, => số dư của phép chia mới là (r-100)
Theo đề ra, ta có:
\(\overline{aaa} = 2\;.\;\overline{bbb} + r \) (1)
\(\overline{aa} = 2\;.\;\overline{bb} + r - 100 \) (2)
Lấy (1) trừ (2) ta có: \(a*100 = b*200 +100\) => \(a = b*2 + 1\)
Ta thấy \(b*2+1\) là số lẻ => \(a=\left\{1;3;5;7;9\right\}\)
Xét các trường hợp:
- a = 1 thì b = (1-1)/2 = 0 (loại do b=0 thì số chia là 0, Không tồn tại phép chia)
- a = 3 thì b = (3-1)/2 = 1 (loại vì 333 chia hết cho 111)
- a = 5 thì b = (5-1)/2 = 2 (chọn)
- a = 7 thì b = (7-1)/2 = 3 (chon)
- a = 9 thì b = (9-1)/2 = 4 (chọn)
Vậy ta có các cặp số bị chia, số chia {\(\overline{aaa}\), \(\overline{bbb}\)} thỏa mãn đề bài là: {555; 222}, {777; 333}, {999; 444}
Bài 2: Gọi số phải tìm là \(\overline{abc}\) (a, b, c ϵ N, a > 0)
Theo đề bài ta có:
\(\overline{3abc} = 25*\overline{abc}\)
\(\Leftrightarrow 3000 +\overline{abc} = 25*\overline{abc}\)
\(\Leftrightarrow 25*\overline{abc} - \overline{abc} =3000\)
\(\Leftrightarrow 24*\overline{abc} =3000\)
\(\Leftrightarrow \overline{abc} =3000:24 = 125\)
Gọi chia ban đầu là: bbb
Gọi số dư là: r
Ta có:
aaa = 2 . bbb + r - 100
aa = 2 . bb + r
(-) aaa - aa = 2bbb + r - 2bb +100 - r
a . 100 + aa - aa = 2 .(b . 100 + bb) - 2bb = 100
a . 100 = 200 . b + 2.bb - 2bb + 100
a . 100 = b . 200 + 100
a = 2b + 1
vay