Cho hàm số \(y=\left(m-2\right)x+m+3\), tìm giá trị của m để:
a) Có đồ thị song song với đường thẳng \(y=3x-3+m\)
b) Có đồ thị vuông góc với đường thẳng \(y=3x-3+m\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}a=-3\\4\ne-1\end{matrix}\right.\Leftrightarrow a=-3\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2m=m-1\\1\ne3\end{matrix}\right.\left(m\ne0;m\ne1\right)\Leftrightarrow m=-1\\ 3,\)
PTHDGD: \(x+3=mx-1\)
Mà chúng cắt tại hoành độ 1 nên \(x=1\Leftrightarrow m-1=4\Leftrightarrow m=5\)
\(5,A\left(2;4\right)\inđths\Leftrightarrow2a+2=4\Leftrightarrow a=1\Leftrightarrow y=x+2\)
PT giao Ox: \(x+2=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)
PT giao Oy: \(y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)
Vì \(OA=OB\) nên OAB vuông cân
Vậy góc tạo bởi đths là 450
a) Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m-2=3\\m+3\ne m-3\end{matrix}\right.\Leftrightarrow m=5\)
b) Để hai đồ thị vuông góc thì \(3(m-2)=-1\)
\(\Leftrightarrow m-2=\dfrac{-1}{3}\)
hay \(m=\dfrac{-1}{3}+2=\dfrac{5}{3}\)