K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

Ta có hình vẽ:

B C D A M

Vì tia phân giác góc B cắt AC tại D nên \(ABD=DBM=\frac{ABM}{2}\)

Xét Δ ABD và Δ MBD có:

AB = BM (gt)

ABD = DBM (chứng minh trên)

BD là cạnh chung

Do đó, Δ ABD = Δ MBD (c.g.c)

=> BAD = BMD = 90o (2 góc tương ứng)

=> \(DM\perp BM\) hay \(DM\perp BC\left(đpcm\right)\)

1 tháng 11 2016

cảm ơn nha

mk chờ bn mãi

12 tháng 11 2016
GT      Tam giác ABC, góc A=90o, góc ABD = góc MBD, BM = BA    
KL  DM vuông góc với BC

- Xét \(\Delta ABD\) và \(\Delta MBD\) ta có:

         BD là cạnh chung

       góc ABD = góc MBD

              BA = BM ( gt )

         =>   \(\Delta ABD=\Delta MBD\) ( Trường hợp c-g-c )

         =>   góc A = góc BMD ( Cặp góc tương ứng )

               Góc A = 90o    =>     góc BMD = 90o

                    <=>   DM vuống góc với BC.

11 tháng 12 2021

HELP ME

11 tháng 12 2021

help gì

 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

a: Xét ΔABD và ΔMBD có 

BA=BM

\(\widehat{ABD}=\widehat{MBD}\)

BD chung

Do đó: ΔABD=ΔMBD

b: Ta có: ΔABD=ΔMBD

nên DA=DM

Ta có: ΔABD=ΔMBD

nên \(\widehat{BAD}=\widehat{BMD}=90^0\)

hay DM⊥BC