tính
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta áp dụng công thức: \(a-b=\left[-\left(b-a\right)\right]\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
\(=-\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2012}\right)\left(1-\frac{1}{2013}\right)\right]\)
\(=-\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2011}{2012}.\frac{2012}{2013}\right)\)
\(=-\frac{1.2.3...2011.2012}{2.3.4....2012.2013}\)
\(=-\frac{1}{2013}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2012}{2013}\)
Liệt tử thừa với mẫu thừa:
\(=\frac{1}{2013}\)
Chúc em học tốt^^
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2011}{2012}.\frac{-2012}{2013}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2011}{2012}.\frac{2012}{2013}\)(vì có 2012 thừa số âm nên kết quả là dương)
\(=\frac{1}{2013}\)
theo công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
=>\(A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{2013}.\frac{2013.2014}{2}\)
\(=>A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2014}{2}=>A=\frac{1}{2}\left(1+2+3+..+2014\right)-\frac{1}{2}\)
\(=>A=\frac{1}{2}.\frac{2014.2015}{2}-\frac{1}{2}=1014552\)
\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)
\(=\frac{6}{2011}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2011}{2012}.\frac{-2012}{2013}\)
\(=\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-2011\right).\left(-2012\right)}{2.3.4....2013}\)
\(=\frac{1.2.3...2011.2012}{2.3.4.5...2013}\) ( vì các số hạng ở trên tử chẵn )
\(=\frac{1}{2013}\)