K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

GIÚP MIK VS NHA MN gianroi

5 tháng 8 2021

không

`a,`

`f(x)=x^2+4x+10`

\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)

`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)

`->` Đa thức không có nghiệm (vô nghiệm).

`c,`

`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.

Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)

    \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`b,`

`g(x)=x^2-2x+2017`

Vì \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`d,`

`g(x)=4x^2004+x^2018+1`

Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)

    \(x^{2018}\ge0\text{ }\forall\text{ }x\)

`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

10 tháng 4 2023

cảm ơn bn nha

 

22 tháng 10 2021

a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)

\(=x^2-x-2-2x^2+3x+2x^2+4\)

\(=x^2+2x+2\)

22 tháng 10 2021

\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

A thuộc S thì A=x^2+3y^2

Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2 

=>N/4 thuộc S

Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8

=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4

Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2 

=>A/4 thuộc S

Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S

=>ĐPCM

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a.

$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$

$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$

$=4(2x+8)+2(-2)(2x-8)$

$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$

b.

$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$

c.

$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$

$=x^4+2x^2-(x^4+6x^2-4x^2)$

$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$

 

a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)

\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)

\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)

\(=34\)

b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-8-x^3-8\)

=-16

c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)

\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)

\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)

\(=-9\)

30 tháng 5 2021

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

30 tháng 8 2018