bài 1:Chi tứ giác ABCD.Gọi E,F,K theo thứ tự là trung điểm của AD,BC,AC.
a)So sánh các độ dài EK và CD,KF vàAB.
b)Chứng minh rằng \(EF\le\frac{AB+CD}{2}\)
bài 2: Cho hình thang ABCD(AB//CD),E là trung điểm của AD,F là trung điểm của BC.Đường thẳng EF cắt BD ở I,cắt AC ở K.
a)Chứng minh rằng AK=KC,BI=ID
b)Cho AB=6cm,CD=10cm.Tính các độ dài EI,KF,IK
bài 1
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2= (AB +CD)/2
Vậy EF ≤ (AB +CD)/2