Bài 2.Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung đếm của AD, BC, AC. Chứng minh rằng:
a. EI//CD, IF//AB
b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có
E là trung điểm của AD
I là trung điểm của AC
Do đó: EI là đường trung bình
=>EI//CD
Xét ΔCAB có
F là trung điểm của BC
I là trung điểm của AC
Do đó: FI là đường trung bình
=>FI//AB
a) Trong tam giác ADC, ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ABC
⇒ EI // CD (tính chất đường trung bình của tam giác)
Và EI=CD/2
Trong tam giác ABC ta có:
I là trung điểm của AC
F là trung điểm của BC
Nên IF là đường trung bình của ∆ ABC
⇒ IF // AB (tính chất đường trung bình của tam giác)
Và IF=AB/2
b) Trong ∆ EIF ta có: EF ≤ EI + IF (dấu “=” xảy ra khi E, I, F thẳng hàng)
Mà EI=\(\dfrac{CD}{2}\); IF=\(\dfrac{AB}{2}\) (chứng minh trên) ⇒EF≤\(\dfrac{CD}{2}+\dfrac{AB}{2}\)
Vậy EF≤\(\dfrac{AB+CD}{2}\) (dấu bằng xảy ra khi AB // CD)
Tick nha 😘
a) Xét ΔACD có
I là trung điểm của AC
E là trung điểm của AD
Do đó: EI là đường trung bình của ΔACD
Suy ra: EI//CD
Xét ΔABC có
I là trung điểm của AC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔABC
Suy ra: IF//AB
* Trong tam giác ADC, ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ADC
⇒EI // CD (tỉnh chất đường trung bình của tam giác) và EI = CD / 2
* Trong tam giác ABC, ta có:
I là trung điểm của AC
F là trung điểm của BC
Nên IF là đường trung bình của ∆ ABC
⇒IF // AB (tỉnh chất đường trung bình của tam giác) và IF= AB / 2
Ta có `E,F,I` là trung điểm của `AD,BC,AC`
`=> EI,IF` là đường trung bình của `\Delta ADC` và `\Delta ACB`
`=> EI////CD , EI = 1/2CD`
`=> IF////AB,IF=1/2AB`
Xét ΔADC có
E là trung điểm của AD(gt)
I là trung điểm của AC(gt)
Do đó: EI là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
Suy ra: EI//DC
Xét ΔABC có
I là trung điểm của AC(gt)
F là trung điểm của BC(gt)
Do đó: IF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: IF//AB
a: Xét ΔACD có
E là trung điểm của AD
I là trung điểm của AC
Do đó: EI là đường trung bình của ΔACD
Suy ra: EI//CD
Xét ΔACB có
F là trung điểm của BC
I là trung điểm của AC
Do đó: FI là đường trung bình của ΔACB
Suy ra: FI//AB
a) Tam giác ACD có:
E là trung điểm của AD
I là trung điểm của AC
=> EI là ĐTB của tam giác ACD
=> EI // CD
Chứng minh tương tự IF là ĐTB của tam giác ABC
=> IF//AB
Ta có hình vẽ:
a) Xét \(\Delta ADC\) có:
AE = ED (gt)
AI = IC (gt)
=> EI là đường trung bình
=> EI // DC
Xét \(\Delta CAB\) có:
AI = IC (gt)
BF = FC (gt)
=> IF là đường trung bình
=> IF // AB
b) Ta có: EF \(\le\) EI + IF
mà IF + EF = \(\dfrac{1}{2}\) AB + \(\dfrac{1}{2}\) CD
= \(\dfrac{1}{2}\) (AB + CD)
=> EF \(\le\) \(\dfrac{\left(AB+CD\right)}{2}\) (đpcm)