bài 1:
tìm 2 số hữu tỉ a và b biết a+b=a nhân b=a/b
bài2
tìm 2 số nguyên x và y biết:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai1;a) cộng 2 vế của pt có;
x(x+y+z) +y(x+y+z) +z(x+y+z) = -5+9+5
(x+y+z)2 =9 => x+y+z = 3
x = -5/3
y = 9/3 =3
z = 5/3
b) x = 1/2 ; y =1
bai2;M = (a+b+c) / 2(a+b+c) = 1/2 không phải là số nguyên
2)
+Áp dụng : \(\frac{a}{a+b}>\frac{a}{a+b+c}\Rightarrow M>1\)
+ Áp dụng : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\Rightarrow M< 2\)
2>M>1 => M không là số nguyên.
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Bài 1: Ta có:
a + b = a.b => a = a.b - b = b.(a - 1) (1)
=> a : b = a - 1 = a + b
=> b = -1
Thay b = -1 vào (1) ta có: a = -1.(a - 1) = -a + 1
=> a + a = 1 = 2a
\(\Rightarrow a=\frac{1}{2}\)
Vậy \(a=\frac{1}{2};b=-1\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
=> (1 - 2y).x = 40
\(\Rightarrow40⋮1-2y\)
Mà 1 - 2y là số lẻ \(\Rightarrow1-2y\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (40;0) ; (-40;1) ; (8;-2) ; (-8;3)
a:b = a-1=a+b là sao mìn k hiểu lắm