Chứng minh rằng:
A=1+4+4^2+4^3+4^4+.........+4^58 Chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)
A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)
A=5+42.5+...+448.5A=5+42.5+...+448.5
A=5(1+42+...+448)A=5(1+42+...+448)
⇒A⋮5
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
k cho mik đi mik cảm ơn
Chia hết cho 5
(1+4)+(4^2+4^3)+...+(4^58+4^59)
=5+4^2(1+4)+...+4^58(1+4)
=5+4^2.5+...+4^58.5
=5(1+4^2+...+4^58)chia hết cho 5
Chia hết cho 21;85 làm tương tự
Chia hết cho 21 nhóm 3 số nhé
Chia hết cho 85 nhóm 4 số nhé
4A=4+4^2+4^3+.....+4^60
4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)
3A=4^60-1
A=\(\frac{4^{60}-1}{3}\)
\(A=1+4+4^2+...+4^{58}+4^{59}\)
\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(A=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(A=5+4^2.5+...+4^{58}.5\)
\(A=5.\left(1+4^2+...+4^{58}\right)\)\(⋮\) \(5\)
Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 5.
.
.
\(A=1+4+4^2+...+4^{58}+4^{59}\)
\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{56}+4^{57}+4^{58}\right)\)
\(A=21+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)
\(A=21+4^3.21+...+4^{57}.21\)
\(A=21.\left(1+4^3+...+4^{57}\right)\) \(⋮\) \(21\)
Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 21.
( Số 21 là do tổng của \(\left(1+4+4^2\right)\)cộng thành nha )
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
A = \(4^0\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
A = \(21\left(4^0+4^3+...+4^{57}\right)\) chia hết cho 21
Hình như số cuối phải là 4^59 chứ nhỉ ??
4^59 ạ,cj giải lại cho em đc ko??