K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

câu 2 ( các kí hiệu vecto khi lm bài thỳ b tự viết nhé mk k viết kí hiệu để trả lời cho nhanh hỳ hỳ )

OA+ OB + OC = OA'+ OB' + OC'

<=> OA - OA' + OB - OB' + OC - OC' = 0

<=> A'A + B'B + C'C = 0

<=> 2 ( BA + CB + AC ) = 0

<=> 2 ( CB + BA + AC ) = 0

<=> 2 ( CA + AC ) = 0

<=> 0 = 0 ( luôn đúng )

 

 

24 tháng 10 2016

câu 1 ( các kí hiệu vecto b cx tự viết nhá )

VT = OD + OC = OA + AD + OB + BC = OA + OB + AD + BC = BO + OB + AD + BC = 0 + AD + BC = AD + BC = VP ( đpcm)

NV
24 tháng 8 2021

\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CB}=\overrightarrow{AD}+\overrightarrow{CB}\)

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OE}+\overrightarrow{EA}\right)+\left(\overrightarrow{OF}+\overrightarrow{FB}\right)+\left(\overrightarrow{OE}+\overrightarrow{EC}\right)+\left(\overrightarrow{OF}+\overrightarrow{FD}\right)\)

\(=2\left(\overrightarrow{OE}+\overrightarrow{EF}\right)+\left(\overrightarrow{EA}+\overrightarrow{EC}\right)+\left(\overrightarrow{FB}+\overrightarrow{FD}\right)\)

\(=2.\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)

19 tháng 5 2021

\(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)

\(=\overrightarrow{OA}+\overrightarrow{AA'}+\overrightarrow{OB}+\overrightarrow{BB'}+\overrightarrow{OC}+\overrightarrow{CC'}\)

\(=\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\left(\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{AC}\right)\)

\(=\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\overrightarrow{CC}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) (đpcm)

 

 

25 tháng 12 2020

1.

Gọi G là trọng tâm tam giác

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{0}\)

\(\Leftrightarrow O\equiv G\)

\(\Rightarrow O\) là trọng tâm tam giác ABC

\(\Rightarrow\Delta ABC\) đều

Gọi độ dài các cạnh tam giác là a

\(\overrightarrow{BN}.\overrightarrow{AM}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{4}a^2-\dfrac{1}{8}a^2-\dfrac{1}{8}a^2+\dfrac{1}{2}a^2=0\)

Mặt khác \(\overrightarrow{BN}.\overrightarrow{AM}=BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)\)

\(\Rightarrow BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow\left(\overrightarrow{AM};\overrightarrow{BN}\right)=90^o\)

25 tháng 12 2020

\(BD=\dfrac{AB}{cos45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{BQ}.\overrightarrow{BP}=\dfrac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{4}BA.BC.cos90^o+\dfrac{1}{4}BA.BD.cos45^o+\dfrac{1}{4}BD.BC.cos45^o+\dfrac{1}{4}BD^2\)

\(=\dfrac{1}{4}a^2+\dfrac{1}{4}a^2+\dfrac{1}{2}a^2=a^2\)

30 tháng 3 2017

a) Gọi M là trung điểm của BC nên:

Ta có:

\dpi{100} \overrightarrow {DB} + \overrightarrow {DC} = \left( {\overrightarrow {DM} + \overrightarrow {MB} } \right) + \left( {\overrightarrow {DM} + \overrightarrow {MC} } \right) = 2\overrightarrow {DM} + \left( {\overrightarrow {MB} + \overrightarrow {MC} } \right) = 2\overrightarrow {DM} + \overrightarrow 0 = 2\overrightarrow {DM}

\dpi{100} \overrightarrow {MB} = - \overrightarrow {MC}

Mặt khác, do D là trung điểm của đoạn AM nên \dpi{100} \overrightarrow {DM} = - \overrightarrow {DA}

Khi đó: \dpi{100} 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = 2\overrightarrow {DA} + 2\overrightarrow {DM} = 2\left (\overrightarrow {DA} + \overrightarrow {DM} \right ) = \overrightarrow 0

b) Ta có:

\dpi{100} 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {OD} \Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OB} - \overrightarrow {OD} } \right) + \left( {\overrightarrow {OC} - \overrightarrow {OD} } \right) = \overrightarrow 0

\dpi{100} \Leftrightarrow 2\overrightarrow {DA} + \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 luôn đúng theo câu a

Vậy:\dpi{100} \Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 4\overrightarrow {O{\rm{D}}} , với O là điểm tùy ý