K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

Ta có: \(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\) => a \(⋮\) 5 => a \(\in\) B(5)

Vậy để \(\frac{2a+5}{5}-\frac{a}{5}\) nguyên thì a \(\in\) B(5)

 

19 tháng 7 2020

Bg

Ta có: \(\frac{2a+8}{5}-\frac{a}{5}\inℤ\)(với a \(\inℤ\))

=> \(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}\)

                                  \(=\frac{2a-a+8}{5}\)

                                  \(=\frac{a+8}{5}\)

Vì \(\frac{a+8}{5}\)\(\inℤ\)mà 8 chia 5 dư 3

=> a chia 5 dư 2

=> a = 5k + 2  (với k \(\inℤ\))

17 tháng 6 2017

\(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\)

Mà 1 là số nguyên nên để \(\frac{2a+5}{5}-\frac{a}{5}\)nguyên thì \(a⋮5\)\(\Rightarrow a\in\left\{...;-10;-5;0;5;10;....\right\}\)

17 tháng 6 2017

\(\frac{2a+5}{5}\) - \(\frac{a}{5}\)\(\frac{2a+5-a}{5}\)\(\frac{a-5}{5}\)  là số nguyên

<=> a-5 chia hết cho 5

=>  a-5 thuộc B(5)= 5k( k thuộc Z)

=> a = 5k+5

k cho mik nha mik chưa có điểm

17 tháng 9 2017

\(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\)

Để số đó nguyên thì phải chia hết cho 5 thôi

=> a là bội của 5 <=> có vô số nghiệm

26 tháng 1 2018

câu a)

\(\frac{2a+8}{5}-\frac{a}{5}=\frac{2a+8-a}{5}=\frac{a+8}{5}\)

Để \(\frac{a+8}{5}\in Z\)thì \(a+8\)phải là bội của 5

Suy ra \(a+8\in\left\{\pm1;\pm5\right\}\)

Suy ra \(a\in\left\{-7;-9;-3;-13\right\}\)

Hết 

Câu 2 tương tự nha

26 tháng 1 2018

bạn làm hộ mink câu b được không đúng mình k cho

14 tháng 10 2016

\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}=\frac{-6a-18+10}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}\)

\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên

<=> a + 3 thuộc Ư(10) = {-10 ; -5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10}

<=> a thuộc {-13 ; -8 ; -5 ; -4 ; -2 ; -1 ; 2 ; 7}

 

\(A=\dfrac{2a+8-5}{5}=\dfrac{2a+3}{5}\)

Để A là số nguyên thì 2a+3=5k

=>2a=5k-3

=>a=(5k-3)/2

21 tháng 2 2018

\(1)\)

Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)

Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)

Suy ra : 

\(a-1\)\(1\)\(-1\)\(13\)\(-13\)
\(a\)\(2\)\(0\)\(14\)\(-12\)

Vậy \(a\in\left\{2;0;14;-12\right\}\)

\(2)\)

Ta có : 

\(\frac{x}{5}=\frac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)

Do đó : 

\(\frac{x}{5}=2\Rightarrow x=2.5=10\)

\(\frac{y}{3}=2\Rightarrow y=2.3=6\)

Vậy x=10 và y=6