Tìm x: a) 8< 2^x < 2^9 * 2^-5
b) 27 < 81^3 / 3^x < 243
c) (2/5)^x > (5\2)^-3*(-2\5)^2
d) (-3/4)^3x-1 = 256/81Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2^3< 2^x< 2^4\)
=>3<x<4
mà x là số nguyên
nên \(x\in\varnothing\)
b: \(\Leftrightarrow3^3< 3^{12-x}< 3^5\)
=>12-x=4
hay x=8
c: \(\Leftrightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3\cdot\left(\dfrac{2}{5}\right)^2=\left(\dfrac{2}{5}\right)^5\)
=>x>5
d: \(\Leftrightarrow3x-1=-4\)
=>3x=-3
hay x=-1
a) (2x)5 : 43 = 815 => 25x = 815.43 = (23)15.(22)3 = 245.26 = 251 => 5x = 51 => x = 10,2
b) (32)x .93 = 2439 => 32x = 2439 : 93 = (35)9 : (32)3 = 345 : 36 = 339 => 2x = 39 => x = 19,5
c) (1/125)3.5x = 255 => 5x = 255 : (1/125)3 = (52)5 : (1/53)3 = 510 : (5-3)3 = 510 : 5-9 = 519 => x = 19
d) 1/81 : 3x = 1/729 => 3x = 1/81 : 1/729 = 1/34.729 = 3-4.36 = 32 => x = 2
e) (5x - 2)4 = 168 = (162)4 = 2564
=> 5x - 2 = -256 ; 256 => 5x = -254 ; 258 => x = -50,8 ; 51,6
P/S : Thay x = 10,2 vào câu a , x = 19,5 vào câu b sẽ thấy điều hư cấu : 210,2 và 919,5.Ko thể tính được giá trị của 2 lũy thừa này.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)\(\left(5x+1\right)^2=\frac{36}{49}\\ \left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{matrix}\right.\)
vậy...
2.
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
⇒ \(5x+1=\pm\frac{6}{7}\)
⇒ \(\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x=\frac{6}{7}-1=-\frac{1}{7}\\5x=\left(-\frac{6}{7}\right)-1=-\frac{13}{7}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-\frac{1}{7}\right):5\\x=\left(-\frac{13}{7}\right):5\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{35};-\frac{13}{35}\right\}.\)
Chúc bạn học tốt!
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
a: \(\Leftrightarrow2^3< 2^x< 2^4\)
=>3<x<4
mà x là số nguyên
nên \(x\in\varnothing\)
b: \(\Leftrightarrow3^3< 3^{12-x}< 3^5\)
=>12-x=4
hay x=8
c: \(\Leftrightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3\cdot\left(\dfrac{2}{5}\right)^2=\left(\dfrac{2}{5}\right)^5\)
=>x>5
d: \(\Leftrightarrow3x-1=-4\)
=>3x=-3
hay x=-1