Cho tam giác ABC vuông tại A, đường cao AH. HD, HE vuông góc AB, AC tại D, E. Chứng minh:
BD√CH + CE√BH = AH√BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
A) VÌ AH VUÔNG GÓC VỚI BC
=> AH LÀ ĐƯỜNG CAO
MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG TRUNG TUYẾN
=> AH LÀ TRUNG TUYẾN CỦA BC
=> BH=CH(ĐPCM)
B) XÉT TAM GIÁC NHA
Vì tam giác ABC cân tại A suy ra AB=AC, góc B=góc C
Xét tam giác ABH và tam giác ACH
có AB=AC(CMT)
góc AHC=góc AHB (=900)
góc B=góc C
suy ra tam giác ABH = tam giác ACH (cạnh huyền-góc nhọn)
suy ra BH=CH (hai cạnh tương ứng)
b) Xét tam giac BHD và tam giác CHE
có BH=CH (CMT)
góc B=góc C
góc HDB = góc HEC = 900
suy ra tam giac BHD = tam giác CHE (cạnh huyền-góc nhọn)
suy ra BD=CE (hai cạnh tương ứng)
a: Xet ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A có AH vuông góc BC
nên BA^2=BH*BC
\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)
\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE
Xét ΔCEB có KH//EB
nên KH/EB=CK/CE=KD/AE
mà AE=EB
nên KH=KD
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)