Cho tam giác ABC có \(\widehat{B}\) = 80o, \(\widehat{C}\) = 30o. Tia phân giác của góc A cắt BC ở D. Tính \(\widehat{ADC}\), \(\widehat{ADB}\).
Các bạn giải chi tiết giúp mình với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A+B+C=180(tính chất của một tam giác)
⇒A=180-B-C
⇒A=180-20
⇒A=160
vì tia phân giác của góc A cắt BC tại D nên A1=A2=\(\dfrac{160}{2}\)=80
\(\Leftrightarrow\)D1=80
Vì góc D1 và góc D2 là 2 góc kề bù nên D1+D2=180
mà góc D1=80
\(\Rightarrow\)D2=180-80
\(\Rightarrow\)D2=100
Vay : D1=80, D2=100
mk ko viết đc kí hiệu góc và độ mong mọi người thông cảm
\(\widehat{BAC}\)= 1800 - (\(\widehat{B}+\widehat{C}\)) = 1800 - ( 800 + 300)= 700
\(\widehat{A}_1\)=\(\widehat{A}_2\)=\(\dfrac{\widehat{A}}{2}\)=\(\dfrac{70^0}{2}\)= 350
\(\widehat{ADC}=\widehat{B}+\widehat{A}_1\)(Góc ngoài của tam giác)
=800 + 350)= 1150
Do đó \(\widehat{ADB}\)= 1800 - \(\widehat{ADC}\)= 1800 + 1150=650
Hình vẽ:
Gọi A1, A2 là 2 góc được tạo ra bởi tia phân giác góc A.
Ta có:
Góc ∠BAC = 1800 – ( ∠B + ∠C)
= 1800 – ( 800 + 300) = 700
Hay ta có thể gọi ∠A = 700
Góc ∠A1 = ∠A2
= ∠A/2 = 700 /2 = 350
= 1800 – (350 + 300)= 1150
= 1800 – 1150
= 650
Trần Nguyễn Hoài Thư
Bạn tự vẽ hình ( hình dễ lắm nhé )
Giải
Xét \(\Delta ABC\) có :
\(\widehat{BAC}+\widehat{CBA}+\widehat{ACB}=180^O\)
\(\Rightarrow\widehat{BAC}=180^O-80^O-30^O\)
\(\Rightarrow\widehat{BAC}=70\)
Ta có : AD là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{70^O}{2}=35^O\)
Xét \(\Delta ABD\) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{BDA}=180^O\)
\(\Rightarrow\widehat{ADB}=180^O-35^O-80^O=65^O\) ( Vì \(\widehat{BAD}=35^O;\widehat{ABD}=80^O\) (CMT )
CMTT ta có :
\(\widehat{ADC}=180^O-30^O-35^O=115^O\)
Vậy \(\widehat{ADC}=115^O\) và \(\widehat{ADB}=65^O\)
Chúc bạn học tốt
hình đây nhé bn!