K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

\(x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+2xyz\)..

\(=\left(x^2y+z^2y+2xyz\right)+\left(y^2x+y^2z\right)+\left(z^2x+x^2z\right)\).

\(=y\left(x+z\right)^2+y^2\left(x+z\right)+xz\left(x+z\right)\)

\(=\left(xy+yz\right)\left(x+z\right)+\left(x+z\right)\left(y^2+xz\right)\).

\(=\left(x+z\right)\left(xy+yz+y^2+xz\right)\).

\(=\left(x+z\right)\left[x\left(y+z\right)+y\left(y+z\right)\right]\).

\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\).

26 tháng 10 2021

a: \(=x\left(x-3\right)-4y\left(x-3\right)\)

=(x-3)(x-4y)

d: \(=\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\)

\(=\left(x+2\right)\left(x-2+x+2\right)\)

=2x(x+2)

26 tháng 10 2021

\(a,=x\left(x-3\right)-4y\left(x-3\right)=\left(x-4y\right)\left(x-3\right)\\ b,=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)=\left(x-1\right)\left(x^2-3x+1\right)\\ c,=\left(x-y\right)\left(1-a\right)\\ d,=\left(x-2\right)\left(x-2+x+2\right)=2x\left(x-2\right)\\ e,=x^2\left(x+y\right)-xz\left(x+y\right)=x\left(x-z\right)\left(x+y\right)\\ f,=\left(x-y-2\right)\left(x+y\right)\)

8 tháng 3 2022

a) \(B=x^3+x^2z+y^2z-xyz+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)

b) \(B=\left(x^2-xy+y^2\right)\left(x+y+z\right)=x^2-xy+y^2\)

\(=x^2-2.x.\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)

Dấu bằng xảy ra khi \(x=y=0\)

10 tháng 1 2019

b) x2y + 4xy + 4y – y3

= y(x2 + 4x + 4 - y2)

= y[(x2 + 4x + 4) - y2]

= y[(x + 2)2 - y2]

= y(x + 2 + y)(x + 2 - y)

13 tháng 10 2017

x 2 y + x y 2  +  x 2 z + x z 2  +  y 2 z + y z 2  + 3xyz.

= ( x 2  y +  x 2 z + xyz) + (x y 2  +  y 2 z + xyz) + (x z 2  + y z 2  + xyz)

= x(xy + xz + yz) + y(xy + yz + xz) + z(xz + yz + xy)

= (x + y + z)(xy + xz + yz).

14 tháng 12 2020

\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)

\(=\left(x^2y+x^2z+xyz\right)+\left(xz^2+yz^2+xyz\right)+\left(xy^2+y^2z+xyz\right)\)

\(=x\left(xy+xz+yz\right)+z\left(xz+yz+xy\right)+y\left(xy+yz+xz\right)\)

\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)