1. \(\frac{4}{3x7}\)+\(\frac{5}{7x12}\)+\(\frac{1}{12x13}\)+\(\frac{7}{13x20}\)+\(\frac{3}{20x23}\)
2. \(\frac{1995x1994-1}{1993x1995+1994}\)
Các bn ơi giúp mk với thi xong rùi mà mk vẫn chưa biết cách làm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhanh giúp mình đi các bạn,nếu giúp mình mà đúng thì mình tk cho
\(P=\frac{1}{5x8}+\frac{1}{8x11}+.....+\frac{1}{602x605}\)
\(\Rightarrow3P=\frac{3}{5x8}+\frac{3}{8x11}+......+\frac{3}{602x605}\)
\(\Rightarrow3P=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-.....+\frac{1}{602}-\frac{1}{605}\)
\(\Rightarrow3P=\frac{1}{5}-\frac{1}{605}\)
\(\Rightarrow3P=\frac{24}{121}\)
\(\Rightarrow P=\frac{24}{121}:3\)
\(\Rightarrow P=\frac{8}{121}\)
a = 1/5-1/8 +1/8-1/11+....+1/602-1/605 = 1/5-(1/8-1/8) -(1/11-1/11)-......-(1/602-1/602)-1/605
1/5-1/605=120/605=24/121
câu b bạn làm tương tự nhé
4/3x7 + 5/7x12 + 1/12x13 + 7/13x20 + 3/20x23
=1/3-1/7+1/7-1/12+1/12-1/13+1/13-1/20+1/20-1/23
=1/3-1/23
=20/69
Kanzaki Mizuki
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\)
\(=\frac{1}{3}-\frac{1}{23}\)
\(=\frac{20}{69}\)
\(\frac{16x17-5}{16x16+11}=\frac{16x16+16-5}{16x16+11}=1\)
\(\frac{4}{3x7}+\frac{5}{7x12}+\frac{1}{12x13}+....+\frac{3}{20x23}\)
=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{20}-\frac{1}{23}\)
=\(\frac{1}{3}-\frac{1}{23}=\frac{20}{69}\)
a) \(\frac{16\cdot17-5}{16\cdot16+11}\)
= \(\frac{16\cdot16+16-5}{16\cdot16+11}\)
= \(\frac{16\cdot16+11}{16\cdot16+11}=1\)
2. \(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995.\left(1993+1\right)-1}{1993.1995+1994}=\frac{1995.1993+1995-1}{1993.1995+1994}=\frac{1995.1993+1994}{1993.1995+1994}\)
1. \(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}\)
\(=\frac{7-3}{3.7}+\frac{12-7}{7.12}+\frac{13-12}{12.13}+\frac{23-20}{20.23}\)
\(=\left[\frac{7}{3.7}-\frac{3}{3.7}\right]+\left[\frac{12}{7.12}-\frac{7}{7.12}\right]+\left[\frac{13}{12.13}-\frac{12}{12.13}\right]+\left[\frac{20}{13.20}-\frac{13}{13.20}\right]+\left[\frac{23}{20.23}-\frac{20}{20.23}\right]\) \(=\left[\frac{1}{3}-\frac{1}{7}\right]+\left[\frac{1}{7}-\frac{1}{12}\right]+\left[\frac{1}{12}-\frac{1}{13}\right]+\left[\frac{1}{13}-\frac{1}{20}\right]+\left[\frac{1}{20}-\frac{1}{23}\right]\) \(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\) \(=\frac{1}{3}-\frac{1}{23}\\ =\frac{20}{69}\)