Khử mẫu của biểu thức lấy căn
\(\sqrt{\frac{1}{600}}\) ; \(\sqrt{\frac{11}{540}}\) ; \(\sqrt{\frac{3}{50}}\) ; \(\sqrt{\frac{5}{98}}\) ; \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}\)
ab\(\sqrt{\frac{a}{b}}\) ; \(\frac{a}{b}\)\(\sqrt{\frac{b}{a}}\) ; \(\sqrt{\frac{1}{b}+\frac{1}{b^2}}\) ; \(\sqrt{\frac{9a^3}{36b}}\) ; 3xy\(\sqrt{\frac{2}{xy}}\)
(Gỉa thiế các biểu thức có nghĩa
\(\sqrt{\frac{1}{600}}=\sqrt{\frac{6}{3600}}=\frac{\sqrt{6}}{\sqrt{3600}}=\frac{\sqrt{6}}{60}\)
\(\sqrt{\frac{11}{540}}=\sqrt{\frac{11}{36.15}}=\frac{1}{6}\sqrt{\frac{165}{15^2}}=\frac{1}{6}.\frac{\sqrt{165}}{15}=\frac{\sqrt{165}}{90}\)
\(\sqrt{\frac{3}{50}}=\sqrt{\frac{3}{25.2}}=\frac{1}{5}\sqrt{\frac{3}{2}}=\frac{1}{5}\sqrt{\frac{6}{4}}=\frac{1}{5}.\frac{\sqrt{6}}{2}=\frac{\sqrt{6}}{10}\)
\(\sqrt{\frac{5}{98}}=\sqrt{\frac{5}{49.2}}=\frac{1}{7}\sqrt{\frac{5}{2}}=\frac{1}{7}.\sqrt{\frac{10}{4}}=\frac{\sqrt{10}}{14}\)
\(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\left|1-\sqrt{3}\right|}{\sqrt{9.3}}=\frac{\sqrt{3}-1}{3\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{9}\)