K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

\(9a^2b^2-b^4+6b^3-9b^2\\ =b^2\left(9a^2-b^2+6b-9\right)\\ =b^2\left[9a^2-\left(b-3\right)^2\right]\\ =b^2\left(3a-b+3\right)\left(3a+b-3\right)\)

30 tháng 11 2017

d) (8a3 – 27b3) – 2a(4a2 – 9b2)

= (2a – 3b)(4a2 + 6ab + 9b2) – 2a(2a – 3b)(2a + 3b)

= (2a – 3b)(4a2 + 6ab + 9b2 – 4a2 – 6ab) = 9b2(2a – 3b)

14 tháng 11 2021

\(=4a^4+4a^2b^2+b^4-4a^2b^2\\ =\left(2a^2+b^2\right)^2-\left(2ab\right)^2\\ =\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)

14 tháng 11 2021

\(4a^4+b^4\)

\(=\left(2a^2\right)^2+\left(b^2\right)^2\)

\(=\left[\left(2a^2\right)^2+4a^2b^2+\left(b^2\right)^2\right]-4a^2b^2\)

\(=\left[2a^2+b^2\right]^2-\left(2ab\right)^2\)

\(=\left(2a^2+b^2+2ab\right)\left(2a^2+b^2-2ab\right)\)

23 tháng 12 2020

\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)

a6, a4 là số mũ hay hệ số vậy bn

14 tháng 12 2022

a: =x^3(x-y)+(x-y)

=(x-y)(x^3+1)

=(x-y)(x+1)(x^2-x+1)

b: =(a-1)^2-9b^2

=(a-1-3b)(a-1+3b)

3 tháng 7 2018

Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)

\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)

\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)

Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):

\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)

\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)

28 tháng 1 2021

2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?

15 tháng 7 2021

`a)x^4+2x^2y+y^2`

`=(x^2+y)^2`

`b)(2a+b)^2-(2b+a)^2`

`=(2a+b-2b-a)(2a+b+2b+a)`

`=(a-b)(3a+3b)`

`=3(a-b)(a+b)`

`c)8a^3-27b^3-2a(4a^2-9b^2)`

`=(2a-3b)(4a^2+6ab+9b^2)-2a(2a-3b)(2a+3b)`

`=(2a-3b)(4a^2+6ab+9b^2-3a^2-6ab)`

`=9b^2(2a-3b)`

a) Ta có: \(x^4+2x^2y+y^2\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\)

\(=\left(x^2+y\right)^2\)

b) Ta có: \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)

\(=\left(a-b\right)\left(3a+3b\right)\)

\(=3\left(a+b\right)\left(a-b\right)\)

28 tháng 7 2021

a,\(5ab-45a^3b\)

=\(5ab\left(1-9a^2\right)\)

=\(5ab\left(1-3a\right)\left(1+3a\right)\)

b,\(3a-6ab+5-10b\)

=\(\left(3a-6ab\right)+\left(5-10b\right)\)

=\(3a\left(1-2b\right)+5\left(1-2b\right)\)

=\(\left(1-2b\right)\left(3a+5\right)\)

c,\(a^2-7ab-2a+14b\)

=\(\left(a^2-7ab\right)-\left(2a-14b\right)\)

=\(a\left(a-7b\right)-2\left(a-7b\right)\)

=\(\left(a-7b\right)\left(a-2\right)\)

d,\(4a^2-8b+4a-8ab\)

=\(\left(4a^2-8ab\right)+\left(4a-8b\right)\)

=\(4a\left(a-2b\right)+4\left(a-2b\right)\)

=\(\left(a-2b\right)\left(4a+4\right)\)

=\(4\left(a-2b\right)\left(a+1\right)\)

e,\(a^2-5a+15b-9b^2\)

=\(\left(a^2-9b^2\right)-\left(5a-15b\right)\)

=\(\left(a-3b\right)\left(a+3b\right)-5\left(a-3b\right)\)

=\(\left(a-3b\right)\left(a+3b-5\right)\)

15 tháng 9 2021

1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)

2) \(9-6\sqrt{a}+a=\left(\sqrt{a}-3\right)^2\)

3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)

5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)

15 tháng 9 2021

1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)

2) \(9-6\sqrt{a}+a=\left(3-\sqrt{a}\right)^2\)

3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)

5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1^2=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)

4 tháng 9 2021

=(c-b-a)(c-b+a)(c+b-a)(c+b+a)

tuấn IQ 1