Tính:
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-\sqrt{121}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-11\right)....\left(11-\sqrt{104}\right)\)
\(=0\)
Do đó biểu thức trên đầu bài bằng 0
A=(9/1999+99/999+999/9999).(1/5-1/4+1/20)
A=(9/1999+99/999+999/9999).(-1/20+1/20)
A=(9/1999+99/999+999/9999).0
A=0
Vì mọi số nhân vs 0 thì đều = 0 kể cả phân số
mk nhanh nhất ủng hộ nha
\(A=\left(\frac{9}{1999}+\frac{99}{999}+\frac{999}{9999}\right)\cdot0\)
A=0
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow c\left(a+b\right)\left(a+b+c\right)=ab\left(-a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(ca+cb+c^2\right)+ab\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Rightarrow\left(a+b\right)\left(c+a\right)\left(b+c\right)=0\)
=> Trong 3 số a,b,c có 2 số đối nhau.Giả sử a = -b thì a9 + b9 = 0.
Tương tự giả sử b = -c hay a = -c thì b99 + c99 = 0 hay c999 + a999 = 0
Vậy biểu thức cần tính bằng 0.
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\text{ }\)
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right).0\)
\(Q=0\)
Q=(1/99+12/999+123/999).(1/2-1/3-1/6) =(1/99+12/999+123/999).0 Q=0
#)Giải :
\(\left(3\frac{10}{99}+4\frac{11}{99}-5\frac{8}{299}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(3\frac{10}{99}+4\frac{11}{99}-5\frac{8}{299}\right).0\)
\(=0\)
Lời giải
=\(\left(3\frac{10}{99}+4\frac{11}{99}-5\frac{8}{299}\right).0\)
\(=0\)
A=\(\frac{\left(1+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
A=\(\frac{\left(1+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).0}{1-2+3-4+...+99-100}\)
A= 0
KẾT QUẢ ĐÚNG 100%
\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right).0\)
\(=0\)
\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)=\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right).0=0\)
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{7}{35}-\frac{5}{35}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).0\)
\(=0\)
bài dễ thế không ai làm được hay thật