Tìm x,biết:
x(x+1)-(x-1)(x+2)=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x+(x+1)+(x+2)+...+(x+30)=1240`
`=> (x + x + x + ... + x) + (1 + 2 + 3 +... + 30) = 1240`
`=> 31x + 465 = 1240`
`=> 31 x = 1240 - 465`
`⇒ 31x = 775`
`⇒ x = 775 : 31`
`⇒ x = 25`
x³ - x² - x = 1/3
<=> x³ = x² + x + 1/3
<=> 3x³ = 3(x² + x + 1/3)
<=> 3x³ = 3x² + 3x + 1
<=> 3x³ + x³ = x³ + 3x² + 3x + 1
<=> 4x³ = (x + 1)³
<=> ³√(4x³) = ³√(x + 1)³
<=> ³√4.x = x + 1
<=> ³√4.x - x = 1
<=> x(³√4 - 1) = 1
<=> x = 1/(³√4 - 1)
Ta có \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow x^2-x^2+2x=-4+3\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
X + 1+2+3+4+5-6-7-8-9=1-2-3-4-5+6+7+8+9
X+ (-15) = 17
X = 17-(-15)
X = 32
vậy x = 32
tk nha
x+(x-1)+(x-2)+....+(x-50)=225
<=>x+x-1+x-2+...+x-50=225
<=>51x-1275=225
<=>51x=-1050
Lời giải:
Dãy $x,x+1, x+2,..., 2002$ có số số hạng là:
$\frac{2002-x}{1}+1=2003-x$
Tổng $x+(x+1)+....+2001+2002=\frac{(2002+x)(2003-x)}{2}$
Do đó:
$\frac{(2002+x)(2003-x)}{2}=2002$
$\Rightarrow (2002+x)(2003-x)=4004$
$2002.2003+x-x^2=4004$
$x^2-x-4006002=0$
$(x-2002)(x+2001)=0$
$\Rightarrow x=2002$ hoặc $x=-2001$
\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)=y^3\)
\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)
\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy x = -1, y =0
x(x+1)-(x-1)(x+2)=8
\(\Leftrightarrow\)\(x^2+x-x^2-2x+x+2=8\)
\(\Leftrightarrow0x=6\left(ptvn\right)\)
\(\Rightarrow S=\varnothing\)