Một viên đạn pháo đang bay ngang với tốc độ v=100m/s thì nổ, vỡ thành 2 mảnh có khối lượng m1,m2 (m2=2m1). Mảnh thứ nhất bay lên theo phương thẳng đứng với tốc độ v1=120m/s. Tìm hướng và độ lớn vận tốc mảnh thứ 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi hệ trên là hệ kín, ta có áp dụng bảo toàn động lượng có: \(\overrightarrow{P}=\overrightarrow{P_1}+\overrightarrow{P_2}\)
\(\Rightarrow P_2^2=P_1^2+P^2\Leftrightarrow\left(m_2v_2\right)^2=\left(m_1v_1\right)^2+\left(\left(m_1+m_2\right)v\right)^2\)
\(\Leftrightarrow\left(20v_2\right)^2=\left(10.519\right)^2+\left(30.300\right)^2\)
\(\Rightarrow v_2=519,4615\) (m/s)
Ta có: \(P_1=10.519=5190N\) và \(P_2=20.519,4615=10389,23N\)
Vậy mảnh hai rơi xéo xuống một góc arcsin(5190/10389,23)\(\approx30^0\)so với phương ngang
Chọn đáp án C
p → = p 1 → + p 2 → → p → ⊥ p 2 → p 1 2 = p 2 2 + p 2 m 1 v 1 2 = m 2 v 2 2 + m v 2 ⇒ v 1 = m 2 v 2 2 + m v 2 m 1 → T h a y s ố v 1 = 4.225 2 + 12.100 2 8 = 187 , 5 m / s
Câu 1.
Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)
\(\Rightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)V\)
Mà \(m_2=2m_1\)
\(\Rightarrow m_1\cdot200+2m_1\cdot v_2=\left(m_1+2m_1\right)\cdot100\)
\(\Rightarrow200+2v_2=300\)
\(\Rightarrow v_2=50\)m/s
Câu 2.
Cơ năng hệ tại A:
\(W_A=W_đ+W_t=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot m\cdot0^2+m\cdot10\cdot24=240m\left(J\right)\)Cơ năng tại B:
\(W_B=W_đ+W_t\)
Mà \(W_t=\dfrac{1}{3}W_đ\Rightarrow W_đ=3W_t\)
\(\Rightarrow W_B=3W_t+W_t=4W_t=4mgh\)
Bảo toàn cơ năng: \(W_A=W_B\)
\(\Rightarrow240m=4mgh\)
\(\Rightarrow h=\dfrac{240}{4g}=\dfrac{240}{4\cdot10}=6m\)
Xét hệ gồm 2 mảnh đạn trong thời gian nổ, đây là hệ kín nên ta áp dụng định luật bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p_h}\)
Trong đó: \(p_h=mv=195\left(kg.m/s\right)\)
\(p_1=m_1v_1=90\sqrt{3}\left(kg.m/s\right)\)
Áp dụng định lý hàm cos: \(p_2=\sqrt{p_1^2+p_h^2-2p_1p_h\cos\left(60^0\right)}\) => v2=p2/m2 =..... tự tính
Gọi \(\beta\) là góc hợp bởi phương ngang và mảnh thứ 2 ta có: \(\cos\beta=\dfrac{p_h^2+p_1^2-p_2^2}{2p_hp_1}=.......\) tự tính nốt :D
Xe tiếp tục chuyển động theo chiều cũ với vận tốc 0,3m/s. Vì ngoại lực tác dụng lên hệ là trọng lực, rất nhỏ so với nội lực tương tác (lực làm vỡ viên đạn thành hai mảnh) nên động lượng của hệ ngay trước và sau khi đạn vỡ được bảo toàn.
Vậy, ngay sau khi vỡ, mảnh đạn thứ hai bay chếch lên, nghiêng góc 58,7° so với phương ngang với vận tốc 70m/s.
Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)
\(p_1=m_1v_1=1\cdot100=100kg.m\)/s
\(p=\left(m_1+m_2\right)\cdot V=\left(1+3\right)\cdot200=800kg.m\)/s
Động lượng mảnh thứ hai:
\(p_2=p-p_1=800-100=700kg.m\)/s
Vận tốc mảnh nhỏ:
\(v_2=\dfrac{p_2}{m_2}=\dfrac{700}{3}=233,33\)m/s