Một chuyển động trong nửa đầu quãng đường , chuyển động có vận tốc không đổi V1 , trong nửa quãng đường còn lại có vận tốc V2 . Tính vận tốc trung bình của nó trên cả quãng đường . Chứng tỏ vận tốc trung bình này không lớn hơn trung bình cộng cảu hai vận tốc V1 và V2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
t1=S1v1=S2v1S1v1=S2v1
t2=S2v2=S2v2t2=S2v2=S2v2
vận tốc trung bình của nhười đó là:
vtb=St1+t2=SS2v1+S2v2=112v1+12v2=1v2+v12v1v2=2v1v2v2+v1vtb=St1+t2=SS2v1+S2v2=112v1+12v2=1v2+v12v1v2=2v1v2v2+v1
lấy vtb-trung bình cộng 2 v ta có:
2v1v2v1+v2−v1+v22=4v1v2−v21−2v1v2−v222(v1+v2)=−(v21−2v1v2+v22)2(v1+v2)2v1v2v1+v2−v1+v22=4v1v2−v12−2v1v2−v222(v1+v2)=−(v12−2v1v2+v22)2(v1+v2)
=−(v1−v2)22(v1+v2)=−(v1−v2)22(v1+v2)
mà (v1-v2)2>0 nên
-(v1-v2)2<0 và 2*(v2+v1)>0 nên ta suy ra
vận tốc trung bình này ko bao giờ lớn hơn trung bình cộng của hai vận tốc v1 và v2
Bài làm :
Gọi thời gian đi hết cả đoạn đường là 2t
Ta có :
S = v1t + v2t = t(v1 + v2 )
Vậy vận tốc trung bình trên cả quãng đường là :
\(V_{TB}=\frac{S}{2t}=\frac{t\left(v_1+v_2\right)}{2t}=\frac{v_1+v_2}{2}\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có :
\(t1=\frac{S1}{v1}=\frac{S}{2v1}\)
\(t2=\frac{S2}{v2}=\frac{S}{2v2}\)
Vận tốc trung bình của người đó là :
\(Vtb=\frac{S}{t1+t2}\times\frac{S}{\frac{S}{2v1}+\frac{S}{2v2}}=\frac{1}{\frac{1}{2v1}+\frac{1}{2v2}}=\frac{1}{\frac{v2+v1}{2v1v2}}\)
Gọi s là độ dài nửa quãng đường. Ta có thời gian đi nửa quãng đường đầu là:
\(t_1=\dfrac{s}{v_1}\)
Gọi thời gian ô tô đi nửa phần còn lại là \(t_2\) và \(t_3\) và \(t_2=t_3\)
Thời gian ô tô đi được trong mỗi đoạn này là:
\(s_2=v_2t_2\)
\(s_3=v_3t_3\)
Mà: \(t_2=t_3=\dfrac{s}{v_2+v_3}\)
Vận tốc \(v_3\) là:
\(v_{tb}=\dfrac{2v_1\left(v_2+v_3\right)}{v_2+v_3+2v_1}\) hay \(40=\dfrac{2\cdot30\cdot\left(45+v_3\right)}{45+v_3+2\cdot30}\)
\(\Leftrightarrow40=\dfrac{60\left(45+v_3\right)}{105+v_3}\)
\(\Leftrightarrow40\left(105+v_3\right)=60\left(45+v_3\right)\)
\(\Leftrightarrow2\left(105+v_3\right)=3\left(45+v_3\right)\)
\(\Leftrightarrow210+2v_3=135+3v_3\)
\(\Leftrightarrow3v_3-2v_3=210-135\)
\(\Leftrightarrow v_3=75\left(km/h\right)\)
a) Thời gian vật đi hết quãng đường trên:
\(t_{tổng}=t_1+t_2=\dfrac{S_1}{v_1}+\dfrac{S_2}{v_2}=\dfrac{520:2}{5}+\dfrac{520:2}{7}=\dfrac{624}{7}\left(s\right)\)
b) Thời gian vật đi quãng đường T1 và quãng đường T2:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{520:2}{5}=52\left(s\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{520:2}{7}=\dfrac{260}{7}\left(\dfrac{m}{s}\right)\end{matrix}\right.\)
Vận tốc trung bình trên cả quãng đường:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{520}{52+\dfrac{260}{7}}=\dfrac{35}{6}\left(\dfrac{m}{s}\right)\)
ta có:
t1=\(\frac{S_1}{v_1}=\frac{S}{2v_1}\)
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của nhười đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{1}{\frac{v_2+v_1}{2v_1v_2}}=\frac{2v_1v_2}{v_2+v_1}\)
lấy vtb-trung bình cộng 2 v ta có:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-v_1^2-2v_1v_2-v_2^2}{2\left(v_1+v_2\right)}=\frac{-\left(v_1^2-2v_1v_2+v_2^2\right)}{2\left(v_1+v_2\right)}\)
\(=\frac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\)
mà (v1-v2)2>0 nên
-(v1-v2)2<0 và 2*(v2+v1)>0 nên ta suy ra
vận tốc trung bình này ko bao giờ lớn hơn trung bình cộng của hai vận tốc v1 và v2
cái chỗ vận tốc tb-tbc 2 v là 4v1v2- v1mũ 2 đúng ko