cho x;y;z thuộc Z biết (x-y)(y-z)(z-x)=x+y+z
chứng minh x+y+z chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có : x chia hết cho 36
=> x thuộc BC(36,90)
x chia hết cho 90
Vì x nhỏ nhất và x khác 0 => x = BCNN(36,90)
Mà 36= 2^2.3^2 90 = 2.3^2.5
=> BCNN(36,90)= 2^2.3^2.5= 180
=> BC(36,90)=B(180)=(0,180,360,...)
Vì x nhỏ nhất khác 0 =>x=180
a, Ta có : 24 chia hết cho (x-1)
\(\Rightarrow\)\(24⋮x-1\)
\(\Rightarrow\)\(x-1\inƯ\left(24\right)\)
\(\Rightarrow\)\(x-1\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow\)\(x\in\left\{2;3;4;5;7;9;13;25\right\}\)
Vậy \(x\in\left\{2;3;4;5;7;9;13;25\right\}\)
a. \(\left\{-1;-2;-5;-10\right\}\)
b.\(\left\{-5;0;5\right\}\)
c. UC(-9;15)= \(\left\{-1;-3;1;3\right\}\)
d. BC (-9;12)=\(\left\{0;36;72\right\}\)
Mà 20 <x<50
=> x=36
a, Vì : 24 \(⋮\)x , 36 \(⋮\)x , 160 \(⋮\)x và x lớn nhất
=> x = ƯCLN(24,36,160)
Ta có :
24 = 23 . 3
36 = 22 . 32
160 = 25 . 5
ƯCLN(24,36,160) = 22 = 4
Vậy x = 4
b, Vì 15 \(⋮\)x , 20 \(⋮\)x , 35 \(⋮\)x và x > 3
=> x \(\in\) ƯC(15,20,35)
Ư(15) = { 1;3;5;15 }
Ư(20) = { 1;2;4;5;10;20 }
Ư(35) = { 1;5;7;35 }
ƯC(15,20,35) = { 1;5 }
Mà : x > 3
=> x = 5
Vậy x = 5
c, Vì : 91 \(⋮\)x , 26 \(⋮\)x và 10 < x < 30
=> x \(\in\) ƯC(91,26)
Ư(91) = { 1;7;13;91 }
Ư(26) = { 1;2;13;26 }
ƯC(91,26) = { 1;13 }
Mà : 10 < x < 30
=> x = 13
Vậy x = 13
d, Vì : 10 \(⋮\)( 3x + 1 )
=> 3x + 1 \(\in\) Ư(10)
Mà : Ư(10) = { 1;2;5;10 }
=> 3x + 1 \(\in\) { 1;10 }
+) 3x + 1 = 1 => 3x = 0 => x = 0
+) 3x + 1 = 10 => 3x = 3 => x = 1
Vậy x \(\in\) { 0;1 }
a) 15 chia hết cho x, 20 chia hết cho x, 35 chia hết cho x => x thuộc ƯC(15;20;35)
Ư(15)={1;3;5;15)
Ư(20)={1;2;4;5;10;20}
Ư(35)={1;5;7;35}
=> ƯC(15;20;35)={1;5}
Mà x lớn nhất => x=5
b) 36 chia hết cho x, 45 chia hết cho x, 18 chia hết cho x => x thuộc ƯC(36;45;18)
Ư(36)={1;2;3;4;6;9;12;18;36}
Ư(45)={1;3;5;9;15;45}
Ư(18)={1;2;3;6;9;18}
=> ƯC(36;45;18)={1;3;9}
Mà x lớn nhất => x=9
a
Từ đề bài
\(\Rightarrow x\inƯCLN\left(15;20;35\right)\)
\(15=3\cdot5\)
\(20=2^2\cdot5\)
\(35=5\cdot7\)
\(ƯCLN\left(15;20;35\right)=5\)
Vậy x = 5
b
Từ giả thiết đề bài
\(\Rightarrow x\inƯCLN\left(36;45;18\right)\)
\(36=2^2\cdot3^2\)
\(45=3^2\cdot5\)
\(18=2\cdot3^2\)
\(ƯCLN\left(36;45;18\right)=3^2=9\)
Vậy x = 9
+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết cho 3
=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27
+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y.
*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3
mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3
=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27
* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1
=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27
* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27
=> x+ y + z chia hết cho 27
+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3
=> x; y; z chia cho 3 dư là 0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3
x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3
tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x) = x+ y + z
=> Th3 không xảy ra
Vậy ....