Cho tam giác ABC. Đường tròn tâm I nội tiếp tam giác, tiếp xúc với cạnh BC ở D. Gọi J, K lần lượt là trung điểm của BC, AD. Cứng minh rằng I, J, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AK giao BC tại F'
->ABF' = ABH + HAF' = ACB + CAF' = 180 - AF'C = AF'B nên AB = BF'. Mà AB = BF =>F trùng F'
Vậy A, K, F thẳng hàng
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC
\(GH.BD=IG.CD=>\frac{GH}{IG}=\frac{Cd}{BD}\)
mặt khác , ta có \(HI//CD\)do cùng zuông góc zs GD
=>\(\frac{GI}{TC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{HG}{BM}=>\frac{Gh}{IG}=\frac{BT}{TC}\)
=>\(\frac{BC}{BD}=\frac{BC}{TC}=>BD=TC\)
M là trung điểm của BC => M là trung điểm của DT
=> OM//AT , OE//AT => O, M ,E thẳng hàng