K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\)

nên \(HB=\dfrac{9}{16}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow\dfrac{9}{16}HC^2=48^2=2304\)

\(\Leftrightarrow HC^2=4096\)

hay HC=64(cm)

\(\Leftrightarrow HB=\dfrac{9}{16}\cdot64=36\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3600\\AC^2=6400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=60\left(cm\right)\\AC=80\left(cm\right)\end{matrix}\right.\)

Ta có: HB+HC=BC

nên BC=36+64=100(cm)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm ,...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0
AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Lời giải:

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.CB$

$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$

$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$

$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)

$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)

 

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Hình vẽ:

11 tháng 10 2017

Ta có: BC = BH + CH = 9 + 16 = 25

Áp dụng hệ thức lượng cho ABC vuông tại A có đường cao AH ta có:

Xét ABC vuông tại A ta có:

Đáp án cần chọn là: A

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

3 tháng 4 2018

a)  Xét   \(\Delta HAC\)và   \(\Delta HBA\)  có:

\(\widehat{AHC}=\widehat{BHA}=90^0\)

\(\widehat{HAC}=\widehat{HBA}\)  cùng phụ với  \(\widehat{HAB}\)

suy ra:    \(\Delta HAC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AH}{HB}=\frac{HC}{AH}\)

\(\Rightarrow\)\(AH^2=HB.HC\)