Cho tam giác ABC vuông tại A , có đường cao AH . Tính các cạnh của tam giác ABC biết HB phần HC = 9 phần 16 và AH = 48cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
Ta có: BC = BH + CH = 9 + 16 = 25
Áp dụng hệ thức lượng cho ABC vuông tại A có đường cao AH ta có:
Xét ABC vuông tại A ta có:
Đáp án cần chọn là: A
Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\)
nên \(HB=\dfrac{9}{16}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow\dfrac{9}{16}HC^2=48^2=2304\)
\(\Leftrightarrow HC^2=4096\)
hay HC=64(cm)
\(\Leftrightarrow HB=\dfrac{9}{16}\cdot64=36\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3600\\AC^2=6400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=60\left(cm\right)\\AC=80\left(cm\right)\end{matrix}\right.\)
Ta có: HB+HC=BC
nên BC=36+64=100(cm)