\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
giúp mình tính nhanh nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
= \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
= \(\frac{1}{3}.\frac{9}{20}\)
= \(\frac{3}{20}\)
Chú Ý dấu "." là dấu nhân nha
Ta có :
\(N=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(N=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3N=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3N=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3N=\frac{1}{2}-\frac{1}{20}\)
\(3N=\frac{9}{20}\)
\(N=\frac{9}{20}:3\)
\(N=\frac{3}{20}\)
Vậy \(N=\frac{3}{20}\)
Chúc bạn học tốt ~
\(N=\frac{1}{10}+\frac{1}{40}+...+\frac{1}{238}+\frac{1}{340}\)
\(N=\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{14.17}+\frac{1}{17.20}\)
\(N=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(N=\frac{1}{2}-\frac{1}{20}\)
\(N=\frac{10}{20}-\frac{1}{20}\)
\(N=\frac{9}{20}\)
Ta có:\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+....+\frac{1}{340}=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\)
= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.....+\frac{1}{17}-\frac{1}{20}\right)=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
S=\(\frac{1}{10}\)+ \(\frac{1}{40}\)+\(\frac{1}{88}\)+\(\frac{1}{154}\)+\(\frac{1}{238}\)+\(\frac{1}{340}\)
S=\(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+\(\frac{1}{14.17}\)+\(\frac{1}{17.20}\)
S= \(\frac{1}{3}\).(\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+\(\frac{3}{17.20}\))
S= \(\frac{1}{3}\).(\(\frac{1}{2}\)-\(\frac{1}{20}\))
S= \(\frac{1}{3}\).\(\frac{9}{20}\)
S=\(\frac{3}{20}\)
a) \(\frac{1}{10}-\frac{1}{40}-\frac{1}{88}-\frac{1}{154}-\frac{1}{238}-\frac{1}{340}\)
\(=\frac{1}{10}-\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\frac{3}{20}\)
\(=\frac{1}{10}-\frac{1}{20}=\frac{2}{20}-\frac{1}{20}=\frac{1}{20}\)
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(A=\frac{1}{3}.\frac{9}{20}\)
\(A=\frac{3}{20}\)
\(A=\frac{1}{2\times5}+\frac{1}{5\times8}+...+\frac{1}{17\times20}\)
\(A\times3=\frac{3}{2\times5}+\frac{3}{5\times8}+...+\frac{3}{17\times20}\)
\(A\times3=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(A\times3=\frac{1}{2}-\frac{1}{20}\)
\(A\times3=\frac{9}{20}\)
\(A=\frac{3}{20}\)
Bạn tách mẫu số ra kiểu 2 x 5
5 x 8
........
Cứ như thế
Sau đó rút gọn
Thực hiện một phép tính nữa
Vậy là ra kết quả
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(3A=\frac{9}{20}\)
\(\Rightarrow A=\frac{3}{20}\)
\(\frac{1}{10}\)+\(\frac{1}{40}\)+\(\frac{1}{88}\)+\(\frac{1}{154}\)+\(\frac{1}{238}\)+\(\frac{1}{340}\)
=\(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+\(\frac{1}{14.17}\)+\(\frac{1}{17.20}\)
=\(\frac{1}{3}\)(\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+\(\frac{3}{17.20}\))
=\(\frac{1}{3}\)(\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+\(\frac{1}{14}\)-\(\frac{1}{17}\)+\(\frac{1}{17}\)-\(\frac{1}{20}\))
=\(\frac{1}{3}\)(\(\frac{1}{2}\)-\(\frac{1}{20}\))
=\(\frac{1}{3}\).\(\frac{9}{20}\)
=\(\frac{3}{20}\)
Ta có: S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
=> S = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 +1/14.17 +1/17.20
Nhân 2 vế với 3 và áp dụng công thức tách 1 phân số thành hiệu 2 phân số: x/n.(n + x) = 1/n - 1/(n + x)
=> 3.S = 3.(1/2.5 + 1/5.8 + 1/8.11 +1/11.14 +1/14.17 +1/17.20)
=> 3.S = 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 +3/14.17 +3/17.20
=> 3.S = 1/2 - 1/ 5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20
=> 3.S = 1/2 - 1/20
=> 3.S = 9/20
=> S = 3/20