Tính giá trị các biểu thức
D=(1/3-1)(1/6-1)(1/10-1)(1/15-1)...(1/820-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\text{ : }\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)=\left(\frac{5}{30}+\frac{3}{30}+\frac{2}{30}\right)\text{ : }\left(\frac{5}{30}+\frac{3}{30}-\frac{2}{30}\right)=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)
b, \(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)\text{ : }\left(\frac{1}{4}-\frac{1}{5}\right)=\left(\frac{60}{120}-\frac{40}{120}+\frac{30}{120}-\frac{24}{120}\right)\text{ : }\left(\frac{5}{20}-\frac{4}{20}\right)=\frac{13}{60}\text{ : }\frac{1}{20}=\frac{13}{3}\)
Ta có :
a, \(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\text{ : }\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)=\left(\frac{5}{30}+\frac{3}{30}+\frac{2}{30}\right)\text{ : }\left(\frac{5}{30}+\frac{3}{30}-\frac{2}{30}\right)=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)
b,
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)\text{ : }\left(\frac{1}{4}-\frac{1}{5}\right)=\left(\frac{60}{120}-\frac{40}{120}+\frac{30}{120}-\frac{24}{120}\right)\text{ : }\left(\frac{5}{20}-\frac{4}{20}\right)=\frac{13}{60}\text{ : }\frac{1}{20}=\frac{13}{3}\)
\(B=-1-\frac{1}{3}-\frac{1}{6}-...-\frac{1}{1225}\)
\(=-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)
\(=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=-2\left(1-\frac{1}{50}\right)=-2\cdot\frac{49}{50}=-\frac{49}{25}\)
\(B=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)
\(B=-2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\right)\)
\(B=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(B=-2\left(1-\frac{1}{50}\right)\)
\(B=-2\cdot\frac{49}{50}\)
\(B=-\frac{49}{25}\)
\(\frac{1}{2}\) E= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}\) E = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{9}\)
\(\frac{1}{2}E\) =\(\frac{7}{18}\)
=> E = \(\frac{7}{9}\)
E=\(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{28}+\frac{1}{36}\)
\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\)
\(\frac{1}{2}E=\frac{3-2}{2.3}+\frac{4-3}{3.4}+...\frac{8-7}{7.8}+\frac{9-8}{8.9}\)
\(\frac{1}{2}E=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{8}{7.8}-\frac{7}{7.8}+\frac{9}{8.9}-\frac{8}{8.9}\)
\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
E=\(\frac{7}{18}:\frac{1}{2}=\frac{7}{9}\)
25645