K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

\(G=lg\left(25^{\log_56}+49^{\log_78}\right)-e^{\ln3}=lg\left[\left(5^2\right)^{\log_56}+\left(7^2\right)^{\log_78}\right]-3\)

   \(=lg\left(5^{\log_56^2}+7^{\log_78^2}\right)-3\)

   \(=lg\left(6^2+8^2\right)-3=lg10^{2-3}=2-3=-1\)

11 tháng 5 2016

\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)

     \(=\left[lg\left(\tan1^0\right)+lg\left(\tan89^0\right)\right]+\left[lg\left(\tan2^0\right)+lg\left(\tan88^0\right)\right]+...+\left[lg\left(\tan44^0\right)+lg\left(\tan46^0\right)\right]+lg\left(\tan45^0\right)\)

     \(=lg\left(\tan1^0.\tan89^0\right)+lg\left(\tan2^0.\tan88^0\right)+...+lg\left(\tan44^0.\tan46^0\right)+lg\left(\tan45^0\right)\)

     \(=lg\left(\tan1^0.\cot1^0\right)+lg\left(\tan2^0.\cot2^0\right)+.....+lg\left(\tan44^0.\cot44^0\right)+lg\left(\tan45^0\right)\)

     \(=lg1+lg1+....+lg1+lg1=0+0+....+0+0=0\)

23 tháng 9 2020

f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)

\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)

g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)

\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)

23 tháng 9 2020

                                                               Bài giải

\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)

\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)

\(=2\)

\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)

10 tháng 5 2022

\(\sqrt{\dfrac{49}{100}}=\dfrac{7}{10}\\ \sqrt{\dfrac{144}{289}}=\dfrac{12}{17}\\ \dfrac{\sqrt{36}}{\sqrt{225}}=\dfrac{6}{15}=\dfrac{2}{5}\\ \dfrac{\sqrt{25}}{\sqrt{121}}=\dfrac{5}{11}\)

10 tháng 5 2022

`\sqrt{49/100}=\sqrt{(7/10)^2}=7/10`

`\sqrt{144/289}=\sqrt{(12/17)^2}=12/17`

`\sqrt{36/225}=\sqrt{(6/15)^2}=6/15`

`\sqrt{25/121}=\sqrt{(5/11)^2}=5/11`

17 tháng 5 2018

E = 3 10 . − 4 9 + 2 5 − 3 10 . 5 9 + − 3 5 E = 3 10 . − 2 45 − 3 10 . − 2 45 E = 3 10 . − 2 45 − − 2 45 E = 3 10 .0 = 0

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang