Cho tam giác ABC cân tại A.Gọi M là trung điểm của cạnh BC
a)chứng minh tam giác ABM=tam giác ACM
b)từ M vẽ MH vuông góc AB và MK vuông góc AC .chứng minh BH=CK
c)từ B vẽ BP vuông góc AC, BP cắt MH tại I .Chứng minh tam giác IBM cân
Giúp mình với !!!nhất là câu c)
c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK
vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)
nên => góc PMC = góc KMC(đồng vị)
vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)
nên tam giác BIM cân tại I
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét \(\Delta AMB\) và \(\Delta MAC\)CÓ
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung
Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I