K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)

a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)

\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)

 

b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm

Thế k vào phương trình thứ nhất, ta được :

\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)

\(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)

\(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)

 c. Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)Tiếp tuyến tại điểm có hoành độ x = 1 vuông góc với đường thẳng\(y=x+1\Leftrightarrow y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(m-1\right)^2}=-1\)\(\Leftrightarrow m=0;m=2\) 

 

 

 

3 tháng 5 2016

Hai điểm cực trị của \(\left(C_1\right)\) là : \(A\left(0;3\right);B\left(2;-1\right)\Rightarrow\overrightarrow{AB}=\left(2;-4\right)\)

Phương trình AB : \(2x+y-3=0\)

Ta có : \(y'=3x^2-6mx+3\left(m-1\right)\)

           \(x_0=1\Rightarrow y_0=2m-1;y'\left(x_0\right)=-3m\)

Phương trình tiếp tuyến \(\Delta:y=-3m\left(x-1\right)+2m-1\)

                            hay \(3mx+y-5m+1=0\)

Yêu cầu bài toán  \(\Leftrightarrow\cos\left(AB;\Delta\right)=\cos60^0=\frac{1}{2}\)

                          \(\Leftrightarrow\frac{\left|6m+1\right|}{\sqrt{5\left(9m^2+1\right)}}=\frac{1}{2}\Leftrightarrow4\left(6m+1\right)^2=5\left(9m^2+1\right)\)

                          \(\Leftrightarrow99m^2+48m-1=0\)

                          \(\Leftrightarrow m=\frac{-8\pm5\sqrt{3}}{33}\) là những giá trị cần tìm

NV
2 tháng 4 2021

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được

3 tháng 5 2016

Ta có \(y=x^4-4x^3+4x^2\Rightarrow4x^3-12x^2+8x\)

a. PTHD giao điểm của (C) và Parabol \(y=x^2\) :

\(x^4-4x^3+4x^2=x^2\Leftrightarrow x^2\left(x^2-4x+3\right)=0\)

                                \(\Leftrightarrow x=0;x=1;x=3\)

\(x=0\) ta có phương trình tiếp tuyến là \(y=0\)

\(x=2\) ta có phương trình tiếp tuyến là \(y=1\)

\(x=3\) ta có phương trình tiếp tuyến là \(y=24x-63\)

b. Gọi d là đường thẳng đi qua A, có hệ số góc k \(\Rightarrow d:y=k\left(x-2\right)\)

d là tiếp tuyến \(\Leftrightarrow\begin{cases}\left(2-x\right)^2x^2-k\left(x-2\right)\\4x\left(x-2\right)\left(x-1\right)=k\end{cases}\) có nghiệm

Thay k vào phương trình thứ nhất ta có :

\(x^4-4x^3+4x^2=\left(x-2\right)\left(4x^3-12x^2+8x\right)\)

\(\Leftrightarrow x\left(3x-4\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow x=0;x=2;x=\frac{4}{3}\)

\(x=0\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)

\(x=2\Rightarrow k=0\Rightarrow\) Phương trình tiếp tuyến \(y=0\)

\(x=\frac{4}{3}\Rightarrow k=-\frac{32}{27}\Rightarrow\) Phương trình tiếp tuyến \(y=-\frac{32}{27}x+\frac{64}{27}\)  

 

 

 

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

27 tháng 4 2022

1

21 tháng 4 2023

loading...  

16 tháng 5 2021

\(f'\left(x\right)=3x^2-6x+1\Rightarrow f'\left(1\right)=-2\)

Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là:

\(\Delta:y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\Rightarrow y=\left(-2\right)\left(x-1\right)-2\)

17 tháng 5 2021

Ta có y'=3x^2 - 6x +1 

gọi M(x0;y0) là tiếp điểm

Ta có x0 =1 do đó yo =1^3 -3.1^2+1-1=-2

y'(1)=3.1^2-6.1+1=-2

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'(1)(x-1)+(-2)=>y=-2x