K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

A=1+1/2^2+1/3^2+1/4^2+...+1/100^2

A<1+1/1*2+1/2*3+1/3*4+...+1/99*100

A=1+1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1+1-1/100

A=2-1/100<2

nên A<2

24 tháng 4 2016

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 2-\frac{1}{100}\)

Mà hiệu  \(2-\frac{1}{100}< 2\Rightarrow A< 2\) 

6 tháng 10 2018

\(VP=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

\(VP=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

\(VP=\frac{2}{2}-\frac{1}{2}+\frac{3}{3}-\frac{1}{3}+\frac{4}{4}-\frac{1}{4}+...+\frac{100}{100}-\frac{1}{100}\)

\(VP=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+...+1-\frac{1}{100}\)

\(VP=100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=VT\) ( đpcm ) 

Mk nghĩ \(VT=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\) bn xem lại đề có nhầm ko 

Chúc bạn học tốt ~ 

6 tháng 10 2018

ko mk thấy đúng mà

ko nhầm đề đâu

1 tháng 4 2016

ta có \(\frac{1}{1^2}<\frac{1}{1.2},\frac{1}{2^2}<\frac{1}{2.3},.........,\frac{1}{100^2}<\frac{1}{100.101}\)

=> A <\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{100.101}\)

dến đây bạn tự tính nha mình tính đc bằng 

A < \(\frac{1}{1}-\frac{1}{101}\)

bây giờ tự lập luận là đc , đơn giản mà 

kết bạn vs mình cũng đc , có bài nào thì mình bày  cho

26 tháng 6 2019

a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

=\(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)

=\(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

=\(1-\frac{1}{100!}< 1\)

\(\Rightarrow\)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)

b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

=\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

=\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)=\(1+1-\frac{1}{99}-\frac{1}{100}\)

=\(2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\Rightarrow\)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

5 tháng 9 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{100^2}< \frac{1}{1}+\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\\ \)

\(\frac{1}{1}+\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\\ =\frac{1}{1}+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\\ =\frac{1}{1}+\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\\ =1\frac{3}{4}-\frac{1}{100}< 1\frac{3}{4}\)

Vậy \(A< 1\frac{3}{4}\)

5 tháng 9 2016

Ta có với mọi n là số tự nhiên thì : \(\frac{1}{n^2}< \frac{1}{n\left(n+1\right)}\)

Áp dụng : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}< 1< 1\frac{3}{4}\)

14 tháng 1 2018

Có : (1+1/2+1/3+....+1/100)+(1/2+2/3+....+99/100)

= 1+(1/2+1/2)+(1/3+2/3)+.....+(1/100+99/100) ( có 99 cặp )

= 1+1+1+....+1 ( có 100 số 1 )

= 100

=> 100-(1+1/2+1/3+....+1/100)=1/2+2/3+3/4+....+99/100

Tk mk nha

14 tháng 1 2018

vì sao đang bằng lại chuyển thành cộng

27 tháng 8 2016

\(E=1-\frac{1}{2^2}-\frac{1}{3^2}-..........-\frac{1}{2004^2}\)

\(E=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+..........+\frac{1}{2014^2}\right)\)

Ta có : \(E< 1-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{2003.2004}\right)\\ \)

Đặt A= \(1-\left(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2003.2004}\right)\\ =>A=1-\left(1-\frac{1}{2004}\right)\\ =>A=1-\frac{2003}{2004}\\ =>A=\frac{1}{2004}\)

Chắc chắn bạn đã ghi nhầm dấu 

 

 

23 tháng 2 2020

 Ta có:\(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\left(đpcm\right)\)

Gọi \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)

Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< \frac{3}{4}\)

\(\Rightarrow D< \frac{3}{4}\left(đpcm\right)\)