CMR :
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(VP=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
\(VP=\frac{2}{2}-\frac{1}{2}+\frac{3}{3}-\frac{1}{3}+\frac{4}{4}-\frac{1}{4}+...+\frac{100}{100}-\frac{1}{100}\)
\(VP=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+...+1-\frac{1}{100}\)
\(VP=100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=VT\) ( đpcm )
Mk nghĩ \(VT=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\) bn xem lại đề có nhầm ko
Chúc bạn học tốt ~
ta có \(\frac{1}{1^2}<\frac{1}{1.2},\frac{1}{2^2}<\frac{1}{2.3},.........,\frac{1}{100^2}<\frac{1}{100.101}\)
=> A <\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{100.101}\)
dến đây bạn tự tính nha mình tính đc bằng
A < \(\frac{1}{1}-\frac{1}{101}\)
bây giờ tự lập luận là đc , đơn giản mà
kết bạn vs mình cũng đc , có bài nào thì mình bày cho
a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
=\(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)
=\(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
=\(1-\frac{1}{100!}< 1\)
\(\Rightarrow\)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
=\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
=\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)=\(1+1-\frac{1}{99}-\frac{1}{100}\)
=\(2-\frac{1}{99}-\frac{1}{100}< 2\)
\(\Rightarrow\)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{100^2}< \frac{1}{1}+\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\\ \)
\(\frac{1}{1}+\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\\ =\frac{1}{1}+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\\ =\frac{1}{1}+\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\\ =1\frac{3}{4}-\frac{1}{100}< 1\frac{3}{4}\)
Vậy \(A< 1\frac{3}{4}\)
Ta có với mọi n là số tự nhiên thì : \(\frac{1}{n^2}< \frac{1}{n\left(n+1\right)}\)
Áp dụng : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}< 1< 1\frac{3}{4}\)
Có : (1+1/2+1/3+....+1/100)+(1/2+2/3+....+99/100)
= 1+(1/2+1/2)+(1/3+2/3)+.....+(1/100+99/100) ( có 99 cặp )
= 1+1+1+....+1 ( có 100 số 1 )
= 100
=> 100-(1+1/2+1/3+....+1/100)=1/2+2/3+3/4+....+99/100
Tk mk nha
\(E=1-\frac{1}{2^2}-\frac{1}{3^2}-..........-\frac{1}{2004^2}\)
\(E=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+..........+\frac{1}{2014^2}\right)\)
Ta có : \(E< 1-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{2003.2004}\right)\\ \)
Đặt A= \(1-\left(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2003.2004}\right)\\ =>A=1-\left(1-\frac{1}{2004}\right)\\ =>A=1-\frac{2003}{2004}\\ =>A=\frac{1}{2004}\)
Chắc chắn bạn đã ghi nhầm dấu
Ta có:\(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\left(đpcm\right)\)
Gọi \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)
Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow D< \frac{3}{4}\left(đpcm\right)\)
A=1+1/2^2+1/3^2+1/4^2+...+1/100^2
A<1+1/1*2+1/2*3+1/3*4+...+1/99*100
A=1+1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1+1-1/100
A=2-1/100<2
nên A<2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 2-\frac{1}{100}\)
Mà hiệu \(2-\frac{1}{100}< 2\Rightarrow A< 2\)