So sánh với 3:
\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)+\(\frac{2013}{2011}\)
Toán 6 nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\frac{2011}{2012}=\frac{2012-1}{2012}=1-\frac{1}{2012}\)
Có : \(\frac{2012}{2013}=\frac{2013-1}{2013}=1-\frac{1}{2013}\)
Có : \(\frac{2013}{2011}=\frac{2011+2}{2011}=1+\frac{2}{2011}\)
Cộng vế với vế ta có : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{2}{2011}=1+1+1-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)=3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}>0\) nên \(3-\left(\frac{1}{2012}+\frac{1}{2013}-\frac{2}{2011}\right)<3\)
Vậy \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}<3\)
Bài nãy sai rồi, cho mình làm lại nha:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)
\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}\)
Vì: \(\frac{1}{2011}>\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2012}+\frac{1}{2012}>0\)
\(\Rightarrow\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)
Nên \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
Ta có : \(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Mà \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
Cộng vế theo vế, ta có : \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
Ta có:
2010/2011 >2010/2011+2012+2013. ;2011/2012 >2011/2011+2012+2013 .;2012/2013 >2012/2011+2012+2013 ->2010/2011+2011/2012+2012/2013 >2010+2011+2012/2011+2012+2013. Vậy P > Q
S= \(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+2}{2011}\)
= 3 + \(\frac{2}{2011}-\frac{1}{2012}-\frac{1}{2013}\)
có \(\frac{1}{2011}>\frac{1}{2012}\)và \(\frac{1}{2011}>\frac{1}{2013}\)
\(\Rightarrow S>3\)
Bài giải :
Theo đề bài ra ta có : n. (n - 1) : 2 = 435
=> n. (n - 1) = 435 . 2 = 870
=> n.(n-1) = 30. 29
Vậy n = 30.
N =\(\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)
tbc là trung bình cộng
2013/2014 chứ!?