Tính P = \(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+2014}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)
NÊN tích dãy số đó là 0
tk nha
\(A=\left(\frac{1}{1+2}\right).\left(\frac{1}{1+2+3}\right).....\left(\frac{1}{1+2+3+...+2014}\right)\)
\(A=\left(\frac{1}{\frac{2.\left(2+1\right)}{2}}\right).\left(\frac{1}{\frac{3.\left(3+1\right)}{2}}\right).....\left(\frac{1}{\frac{2014.\left(2014+1\right)}{2}}\right)\)
\(A=\frac{1}{\frac{2.3}{2}}.\frac{1}{\frac{3.4}{2}}.\frac{1}{\frac{4.5}{2}}.....\frac{1}{\frac{2014.2015}{2}}\)
\(A=\frac{2}{2.3}.\frac{2}{3.4}.\frac{2}{4.5}.....\frac{2}{2014.2015}\)
Đến đây thì không tính được nữa , có thể bạn chép nhầm dấu cộng thành dấu nhân rồi.
Nếu đổi dấu nhân thành dấu cộng, ta được:
\(A=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)
\(A=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2014.2015}\right)\)
\(A=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=2.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
\(A=2.\frac{2012}{6045}\)
\(A=\frac{4024}{6045}\)
Ta có :
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)
\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)
\(A=\frac{1}{2016}\)
Vậy \(A=\frac{1}{2016}\)
Chúc bạn học tốt ~
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)
\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)
\(\Rightarrow A=\frac{1}{2016}\)
Bổ đề: a^2 - b^2 = (a - b)(a + b)
Chứng minh bổ đề trên bằng cách dùng hiệu diện tích 2 hình vuông.
Giải: Có \(\frac{1}{2^2}-1=\left(\frac{1}{2}\right)^2-1^2=\left(\frac{1}{2}-1\right)\left(\frac{1}{2}+1\right)\) \(=\left(-\frac{1}{2}\right)\frac{3}{2}\)
Làm tương tự, suy ra A = (-1/2)(3/2)x(-2/3)(4/3)...x(-2013/2014)(2015/2014). Triệt tiêu còn 2015/2 x (-1)^2013 x 1/2014 = -( 2015/2 x 1/2014). Bạn tự tính nốt nhé!
P/s: Có thể bước triệt tiêu hoặc khai triển sai, bạn thử làm lại nhé!
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)( có 2013 thừa số )
\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right).....\left(-\frac{\text{4056196}}{2014^2}\right)\)
\(-A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{4056196}{2014^2}=\frac{1.3.2.4.3.5....2013.2015}{2.2.3.3.4.4.....2014.2014}\)
\(-A=\frac{\left(1.2.3...2013\right).\left(3.4.5.6...2015\right)}{\left(2.3.4.5....2014\right).\left(2.3.4.5...2014\right)}=\frac{1.2015}{2.2014}=\frac{2015}{4028}\)
\(A=-\frac{2015}{4028}\)
Vậy.....
-A=(\(1-\frac{1}{2^2}\)) . (\(1-\frac{1}{3^2}\))......(\(1-\frac{1}{2014^2}\))
-A= \(\frac{3}{4}\). \(\frac{8}{9}\). ...... \(\frac{4056195}{4056196}\)
-A= \(\frac{1.3.2.4.......2013.2015}{2.2.3.3.......2.14.2014}\)
-A= \(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\)
-A= \(\frac{2015}{2014.2}\)
-A=\(\frac{2015}{4028}\)
Ta có, với \(n\) nguyên dương: \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
Suy ra, \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{1}{1+2}=\frac{1.4}{2.3}\)
\(1-\frac{1}{1+2+3}=\frac{2.5}{3.4}\)
....
\(1-\frac{1}{1+2+...+2013}=\frac{2012.2015}{2013.2014}\)
\(1-\frac{1}{1+2+...+2014}=\frac{2013.2016}{2014.2015}\)
Suy ra, \(P=\frac{\left(1.2.....2013\right).\left(4.5.....2016\right)}{2.\left(3.4.....2014\right)^2.2015}=\frac{2016}{3.2014}=\frac{336}{1007}\)
Tính ra sau đó rút gọn đi, thử coi sao.