tìm x biết x(5-2x)+2x^2=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(5 – 2x) + 2x(x – 1) = 15
(x.5 – x.2x) + (2x.x – 2x.1) = 15
5x – 2x2 + 2x2 – 2x = 15
(2x2 – 2x2) + (5x – 2x) = 15
3x = 15
x = 5.
Vậy x = 5.
a)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\\ \Leftrightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\\ \Leftrightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15-1\right).\left(2d-15+1\right)=0\end{matrix}\right.\\\Leftrightarrow\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right. \)
b) \(\left(7x-11\right)^3=\left(-3\right)^2.15+208\\ \Leftrightarrow\left(7x-11\right)^3=343=7^3\\ \Leftrightarrow7x-11=7\\ \Leftrightarrow x=\dfrac{18}{7}\)
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left[2\left(x+2\right)\right]^2=9\)
\(\left[2x+1-2\left(x+2\right)\right]\left[2x+1+2\left(x+2\right)\right]=9\)
\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)
\(-3\left(4x+5\right)=9\)
\(4x+5=-3\)
\(4x=-8\)
\(x=-2\)
b) \(x^2-2x-15=0\)
\(x^2-5x+3x-15=0\)
\(x\left(x-5\right)+3\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
c) \(2x^2+3x-5=0\)
\(2x^2-2x+5x-5=0\)
\(2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}}\)
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
x5-x22+2x2-2x=15
x(5-2)+x2(2-2)=15
=>x3+x20=15
=>x3=15
=>x=15:3
=>x=5
vậy x=5
hơi dài dòng 1 chút nhưng chắc ko sao
\(\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow3x=15\Leftrightarrow x=5\)
a) (2x-15)5 = (2x-15)7
(2x-15)5-(2x-15)7 = 0
(2x-15)5-[1-(2x-15)2] = 0
=> (2x-15)5 = 0 hoặc 1-(2x-15)2 = 0
=> 2x-15 = 0 hoặc (2x-15)2 = 1
2x = 0+15 hoặc 2x-15 = 1 hoặc 2x-15 = -1
2x = 15 hoặc 2x = 16 hoặc 2x = 14
x = 15:2 hoặc x = 16:2 hoặc x = 14:2
x = 7,5 hoặc x = 8 hoặc x = 7
=> 5x - 2x2 + 2x2 = 15
=> 5x = 15
=> x = 3